CASE 1.2: risk aversion

Information partition: $\left\{\left\{s_{1},\right\},\left\{s_{2}\right\}, \ldots,\left\{\left\{_{n}, 3\right\}\right.\right.$

When a person is risk averse then it is no longer true that the analysis in terms of changes in wealth and the analysis in terms of total wealth are equivalent.

probability $\frac{4}{5}$	$\frac{1}{5}$	
state \rightarrow	s_{1}	s_{2}
act \downarrow		
a	$\$ 18$	$\$ 18$
b	$\$ 25$	$\$ 0$

Suppose that the DM's vol Neumann-Morgenstern utility-of-money function is: $U(\$ x)=\sqrt{x}$ and suppose that the DM' initial wealth is $\$ 600$.

$$
\begin{aligned}
& \mathbb{E}[U(a)]=\sqrt{18}=4.24 \\
& \mathbb{E}[U(b)]=\frac{4}{5} \sqrt{25}+\frac{1}{5} \sqrt{0}=\frac{4}{5} 5=4
\end{aligned}
$$

In terms of total wealth:

$$
\begin{array}{ccc}
\text { probability } & \frac{4}{5} & \frac{1}{5} \\
\text { state } \rightarrow & s_{1} & s_{2} \\
\text { act } \downarrow & & \\
a & \$ 618 & \$ 618 \\
b & \$ 625 & \$ 600 \\
\mathbb{E}[U(a)]=\sqrt{618}=24.86 \\
\mathbb{E}[U(b)]=\frac{4}{5} \sqrt{625}+\frac{1}{5} \sqrt{600}=24.9
\end{array}
$$

Thus when we deal with risk aversion or risk love we need to reason in terms of total wealth.

For a risk neutral person expected value of lottery
$\rightarrow\left(\begin{array}{lll}124 & 201 & 244 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6}\end{array}\right)$. Exp. value of his $-74=95.67$
Let us go back to the previous example, where the amounts are changes in wealth.

Suppose that the DM's initial wealth is $\$ 140$ and her utility function is $U(\$ x)=\sqrt{x}$. How much would she be willing to pay for perfect information?

STEP 1. First of all: expected utility is if she does not purchase information.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 144$	$\$ 176$	$\$ 384$
b	$\$ 148$	$\$ 341$	$\$ 158$
c	$\$ 264$	$\$ 152$	$\$ 164$

$$
\begin{aligned}
& \mathbb{E}[U(a)]=\frac{1}{2} \sqrt{144}+\frac{1}{3} \sqrt{176}+\frac{1}{6} \sqrt{384}=13.69 \\
& \mathbb{E}[U(b)]=\frac{1}{2} \sqrt{148}+\frac{1}{3} \sqrt{341}+\frac{1}{6} \sqrt{158}=14.33 \\
& \mathbb{E}[U(c)]=\frac{1}{2} \sqrt{264}+\frac{1}{3} \sqrt{152}+\frac{1}{6} \sqrt{164}=14.37
\end{aligned}
$$

in the absence of information rake action C

STEP 2. Calculate her expected utility if she purchases perfect information at price p.

- If I am told that the state is s_{1} then I will choose c and get a utility of $\sqrt{264-p}$
- If I am told that the state is s_{2} then I will choose b and get a utility of $\sqrt{341-P}$
- If I am told that the state is s_{3} then I will choose a and get a utility of $\sqrt{384-P}$

Expected utility if I purchase information is:

$$
\begin{aligned}
& f(p)=\frac{1}{2} \sqrt{264-p}+\frac{1}{3} \sqrt{341-p}+\frac{1}{6} \sqrt{384-p} \\
& \text { very different from: } \frac{1}{2} \sqrt{264}+\frac{1}{3} \sqrt{341}+\frac{1}{6} \sqrt{384}-P \\
& \text { WRONG CALCULATION }{ }^{6} \\
& \text { about free } \\
& \text { information } \\
& \text { expect } \\
& f(0) \geq 14.37 \\
& \text { Suppose } p=100 \\
& f(100)=14.39>\underbrace{14.37}_{E \cup \text { without information }}
\end{aligned}
$$

For a risk ventral person the maximum value of p is 95.67

How much should one be prepared to pay for information?

CASE 2: monetary outcomes and IMPERFECT information

$$
\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\}\right\}
$$

CASE 2.1: risk neutrality $\quad U(\$ x)=x$
The amounts are changes in her wealth.

probability	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$
state \rightarrow	S_{1}	S_{2}	S_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 64$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

STEP 0. Change the probabilities so that they have the same denominator:

$$
\text { probability } \quad \frac{3}{12} \quad \frac{4}{12} \quad \frac{2}{12} \quad \frac{3}{12}
$$

$$
\text { state } \rightarrow \quad s_{1} \quad s_{2} \quad s_{3} \quad s_{4}
$$

act \downarrow

a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 0$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

$\mathbb{E}[a]=\frac{3}{12} 16+\frac{4}{12} 36+\frac{2}{12} 100+\frac{3}{12} 12=35.67$

$$
\begin{aligned}
& \text { reference } \\
& \text { utility }
\end{aligned}
$$

$\mathbb{E}[b]=\frac{3}{12} 10+\frac{2}{12} 18+\frac{3}{12} 120=35.5$
$\mathbb{E}[c]=\frac{3}{12} 104+\frac{4}{12} 12+\frac{2}{12} 24=34$

Thus she will choose a and expect 35.67
Suppose now that Ann is offered, at price p, the following imperfect information:

$$
\left\{\left\{s_{1}, S_{2}\right\},\left\{S_{3}, S_{4}\right\}\right\}
$$

$\begin{array}{rcccc}\text { probability } & \frac{3}{12} & \left(\frac{4}{12}\right. & \frac{2}{12} & \frac{3}{12} \\ \text { state } \rightarrow & s_{1} & S_{2} & s_{3} & s_{4} \\ \text { act } \downarrow & & & & \\ a & \$ 16 & \$ 36 & \$ 100 & \$ 12 \\ b & \$ 10 & \$ 0 & \$ 18 & \$ 120 \\ c & \$ 104 & \$ 12 & \$ 24 & \$ 0\end{array}$

$$
3+4=7
$$

- If informed that $\left\{s_{1}, s_{2}\right\}$ then

probability	$\frac{3}{7}$	$\frac{4}{7}$
state \rightarrow	s_{1}	s_{2}
act \downarrow		

0 \& 0\end{array}\right)\)

$$
\mathbb{E}[a]=\frac{3}{7} 16+\frac{4}{7} 36=27.43
$$

$$
\mathbb{E}[b]=\frac{3}{7} 10=4.29
$$

$$
\mathbb{E}[c]=\frac{3}{7} 104+\frac{4}{7} 12=51.43
$$

Thus she will choose C and expect 51.43

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\left(\frac{2}{12}\right.$	$\left(\frac{3}{12}\right)$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 0$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

$$
\text { probability } \frac{2}{5} \quad \frac{3}{5} \quad 2+3=5
$$

- If informed that $\left\{s_{3}, s_{4}\right\}$ then

state \rightarrow	s_{3}	s_{4}
act \downarrow		
a	$\$ 100$	$\$ 12$
b	$\$ 18$	$\$ 120$
c	$\$ 24$	$\$ 0$

$$
\mathbb{E}[a]=\frac{2}{5} 100+\frac{3}{5} 12=47.2
$$

$\mathbb{E}[b]=\frac{2}{5} 18+\frac{3}{5} 120=79.2$

$$
\mathbb{E}[c]=\frac{2}{5} 24=9.6
$$

Thus she will choose b and expect 79.2

$$
\begin{aligned}
& P\left(\left\{s_{1}, s_{2}\right\}\right)=P\left(s_{1}\right)+P\left(s_{2}\right)=\frac{3}{12}+\frac{4}{12}=\begin{array}{cccccc}
\text { probability } & \frac{3}{12} & \frac{4}{12} & \frac{2}{12} & \frac{3}{12} \\
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} & s_{4} \\
P\left(\left\{s_{3}, s_{4}\right\}\right)=\frac{2}{12}+\frac{3}{12}=\frac{5}{12} & \frac{7}{12} & \text { act } \downarrow & a & \$ 16 & \$ 36 \\
\$ 100 & \$ 12 \\
& b & \$ 10 & \$ 0 & \$ 18 & \$ 120 \\
& c & \$ 104 & \$ 12 & \$ 24 & \$ 0
\end{array}
\end{aligned}
$$

The probability of $\left\{s_{1}, s_{2}\right\}$ is $\frac{7}{12}$ and the probability of $\left\{s_{3}, s_{4}\right\}$ is $\frac{5}{12}$

$$
\begin{aligned}
& \text { Exphof free information is } \quad \frac{7}{12} 51.43+\frac{5}{12} 79.2 h_{h}^{-p}=63-p \\
& \text { Page } 3 \text { of } 7 \\
& \begin{aligned}
& 63-p \geq 35.67 \text { maximum } p \\
& \text { with no information }=63-35.67= \\
& \$ 27.33
\end{aligned}
\end{aligned}
$$

