PERFECT INFORMATION

CASE 1.2: risk aversion

When a person is risk averse then it is no longer true that the analysis in terms of changes in wealth and the analysis in terms of total wealth are equivalent.

probability
$$\frac{4}{5}$$
 $\frac{1}{5}$
state \rightarrow s_1 s_2
act \downarrow
 a \$18 \$18
 b \$25 \$0
 $charpes in wealth$

Information partition: { [5,3, [52], ..., {5,3]

Suppose that the DM's von Neumann-Morgenstern utility-of-money function is: $U(\$x) = \sqrt{x}$ and suppose that the DM's initial wealth is \$600.

 $\mathbb{E}[U(a)] = \sqrt{18} = 4.24$ $\mathbb{E}[U(b)] = \frac{4}{5}\sqrt{25} + \frac{1}{5}\sqrt{0} = \frac{4}{5}5 = 4$

In terms of total wealth:

probability	$\frac{4}{5}$	$\frac{1}{5}$
state \rightarrow	S ₁	<i>S</i> ₂
act \downarrow		
а	\$618	\$618
b	\$625	\$600

 $\mathbb{E}[U(a)] = \sqrt{68} = 24.86$

 $\mathbb{E}[U(b)] = \frac{4}{5}\sqrt{625} + \frac{1}{5}\sqrt{600} = 24.9$

Thus when we deal with risk aversion or risk love we need to reason in terms of **total wealth**.

Suppose that the DM's initial wealth is \$140 and her utility function is $U(\$x) = \sqrt{x}$. How much would she be willing to pay for perfect information?

STEP 1. First of all: expected utility is if she does not purchase information.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
act \downarrow			
а	\$144	\$176	\$384
b	\$148	\$341	\$158
С	\$264	\$152	\$164

 $\mathbb{E}[U(a)] = \frac{1}{2}\sqrt{144} + \frac{1}{3}\sqrt{176} + \frac{1}{6}\sqrt{384} = 13.69$ $\mathbb{E}[U(b)] = \frac{1}{2}\sqrt{148} + \frac{1}{3}\sqrt{341} + \frac{1}{6}\sqrt{158} = 14.33$ $\mathbb{E}[U(c)] = \frac{1}{2}\sqrt{264} + \frac{1}{3}\sqrt{152} + \frac{1}{6}\sqrt{164} = [14.37]$ in the absence of information take action C **STEP 2.** Calculate her expected utility if she purchases perfect information at price *p*.

•	If I am told that the state is s_1 then I will	probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
	choose C and get a utility of $\sqrt{264 - p}$	state \rightarrow	s_1	S ₂	<i>s</i> ₃
•	If I am told that the state is s_2 then I will	act ↓		/	
	choose b and get a utility of $\sqrt{341-P}$	а	\$144	\$176	<mark>\$384</mark>
•	If I am told that the state is s_3 then I will	b	\$148	\$ <mark>341</mark>	\$158
	choose a and get a utility of $\sqrt{384 - P}$	С	\$264	\$152	\$164

Expected utility if I purchase information is:

95.67

$$f(p) = \frac{1}{2}\sqrt{264-p} + \frac{1}{3}\sqrt{341-p} + \frac{1}{6}\sqrt{384-p}$$

$$\frac{Very \text{ different from : } \frac{1}{2}\sqrt{264} + \frac{1}{3}\sqrt{341} + \frac{1}{4}\sqrt{384-p}$$

$$\frac{Very \text{ different from : } \frac{1}{2}\sqrt{264} + \frac{1}{3}\sqrt{341} + \frac{1}{4}\sqrt{384-p}$$

$$\frac{WRDNG CALCULATION}{F(0)} = 14.39$$

$$For u risk united person the maximum value of p is$$

How much should one be prepared to pay for information? CASE 2: monetary outcomes and IMPERFECT information

CASE 2.1: risk neutrality $\bigcup(\$x) = x$

The amounts are **changes** in her wealth.

probability	<u>1</u> 4	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\overline{}$	
state \rightarrow	<i>S</i> ₁	S_2	<i>S</i> ₃	<i>S</i> ₄		
act \downarrow						preliminan
а	\$16	\$36	\$100	\$12		Step
b	\$10	\$64	\$18	\$120		
С	\$104	\$12	\$24	\$0		

 $\{ \{ S_1, S_2 \}, \{ S_3, S_4 \} \}$

STEP 0. Change the probabilities so that they have the same denominator:

$$\mathbb{E}[a] = \frac{3}{12} |0| + \frac{2}{12} |2| + \frac{3}{12} |2| = \frac{3}{12}$$

$$\mathbb{E}[c] = \frac{3}{12} |0| + \frac{4}{12} |2| + \frac{2}{12} |2| = \frac{3}{12} |0| + \frac{3}{12} |2| + \frac{3}{12} |2| = \frac{3}{12} |0| + \frac{3}{12} |2| + \frac{3}{12} |2| = \frac{3}{12} |0| + \frac{3}{12} |2| + \frac{3}{12} |2| = \frac{3}{12} |0| + \frac{3}{12} |2| + \frac{3}{12} |2| = \frac{3}{12} |0| + \frac{3}{12} |2| + \frac{3$$

Thus she will choose α and expect 35.67

Suppose now that Ann is offered, at price *p*, the following imperfect information:

$$\{\{s_{1}, s_{2}\}, \{s_{3}, s_{4}\}\}$$
probability $(\frac{3}{12}) (\frac{4}{12}) (\frac{2}{12}) (\frac{3}{12}) (\frac{3}{$

Thus she will choose C and expect 51.43

probability $\frac{3}{12}$ $\frac{4}{12}$ $\begin{pmatrix} \frac{2}{12} \\ \frac{3}{12} \end{pmatrix}$			
state \rightarrow s_1 s_2 s_3 s_4			
a \$16 \$36 \$100 \$12			
<i>b</i> \$10 \$0 \$18 \$120			
c \$104 \$12 \$24 \$0			
probability	$\frac{2}{3}$	2	+3= S
state	55		
state —	$s_3 s_4$		
• If informed that $\{s, s\}$ then			
	\$100 \$12		
b	\$18 \$120		
C C	\$24 \$0		
$\mathbb{E}[a] = \frac{2}{5} \cos + \frac{5}{5} \sin 2 = 4\%$	2		
$\mathbb{E}[b] = \frac{2}{5} \cdot 18 + \frac{3}{5} \cdot 120 = \frac{79}{79} \cdot \frac{3}{5}$	2		
$\mathbb{E}[c] = \frac{2}{5} 24 = 9.6$			
Thus she will choose b and expect 79.2			
	probability $\frac{3}{2}$	4 2	3
$P(\{s_1, s_2\}) = P(s_1) + P(s_2) = \frac{3}{2} + \frac{4}{4} =$	12	12 12	12
	state $\rightarrow s_1$	$s_2 \qquad s_3$	<i>S</i> ₄
	<i>a</i> \$16	\$36 \$100	\$12
$Y(133, 543) = \frac{1}{12} + \frac{3}{12} = \frac{5}{12}$	<i>b</i> \$10	\$0 \$18	\$120
	<i>c</i> \$104	\$12 \$24	\$0
The probability of $\{s_1, s_2\}$ is $\frac{2}{2}$ and the probability of	$\{s_3, s_4\}$ is $\frac{5}{12}$		
. Co. O Lee		- P	

value
Explos Free information is
$$\frac{7}{12}51.43 + \frac{5}{12}79.2 = 63 - p$$

Page 3 of 7
 $63-p \geq 35.67 = 63-35.67 = 63-35.67 = 63-35.67 = 527.33$