CASE 2.2: risk aversion

Smaller example.

	probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
	state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
C1 . 141	act \downarrow			
Changes in wealth:	а	\$21	\$0	\$156
	b	\$0	\$125	\$0
	С	\$96	\$0	\$69

Assume: $U(\$x) = \sqrt{x}$ and initial wealth is \$100. Then

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	S_1	<i>S</i> ₂	<i>S</i> ₃
act ↓			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	S ₁	<i>S</i> ₂	S ₃
act \downarrow			
a	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 1. If she does **not purchase** information.

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

$\mathbb{E}[U(c)] =$

Thus she will choose

with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
act \downarrow			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 2. If she purchases information $\{\{s_1, s_2\}, \{s_3\}\}$ at price *p*.

• If informed that $\{s_1, s_2\}$ then the revised decision problem is:

probability

state \rightarrow	S_1	S_2
act↓		
а	\$121	\$100
b	\$100	\$225
С	\$196	\$100

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

$\mathbb{E}[U(c)] =$

Thus she will choose with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	S_1	S_2	<i>S</i> ₃
act ↓			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

• If informed that $\{s_3\}$ then she will choose with a utility of

Given the initial probabilities: probability $\frac{2}{9} \quad \frac{4}{9} \quad \frac{3}{9}$ state $\rightarrow s_1 \quad s_2 \quad s_3$ the probability of receiving

information $\{s_1, s_2\}$ is $\frac{6}{9} = \frac{2}{3}$ and the probability of receiving information $\{s_3\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price *p* is:

For example, if p = \$30 then

The maximum price the DM is willing to pay for information is given by the solution to:

Which is

Future Value and Present Value

- \$100 today, or
- \$200, 5 years from now

Reasons for preferring \$100 today:

Rephrase the choice as:

- \$100 today, but cannot be spent until 5 years from now, or
- \$200, 5 years from now

Definition: the *future value* of x, *n* periods from now is

$$x(1+r)^n$$

where r is the interest rate per period r.

- If r = 0.10 (i.e. 10%) then the future value of \$100 five years from now is
- If r = 0.15 (i.e. 15%) then the future value of \$100 five years from now is

Definition: the *present value* y of x available n periods from now is the solution to

- If r = 0.10 (i.e. 10%) then the present value of \$200 five years from now is
- If r = 0.15 (i.e. 15%) then the present value of \$200 five years from now is

r is the interest **rate**, $\delta = \frac{1}{1+r}$ is the discount **factor**. Thus the present value of x available *n* periods from now is also denoted by $x\delta^n$.

Note that
$$\frac{1}{(1+r)^n} = \left(\frac{1}{1+r}\right)^n = \delta^n$$
.

Above we calculated the present value of a sum of money. We can also calculate the present value of a **stream of payments**:

So the present value of that income stream is

This is a sum of money that is **equivalent to that income stream**. Equivalent in what sense?

Suppose that r = 12% (the present is date 0):

date 2	date 3	date 5	
\$2,000	\$3,000	\$3,500	

The present value of \$2,000 available at date 2 is

the present value of \$3,000 available at date 3 is

the present value of \$3,500 available at date 5 is

Put these three sums of money in three different accounts

CD1 (principal: \$1,594.39)

CD2 principal: \$2,135.34)

CD3 (principal: \$1,985.99).

After two years (at date 2) close account CD1: the balance is

After three years (at date 3) close account CD2: the balance is

After five years (at date 5) close account CD3: the balance is

What if instead of sums of money we are considering other outcomes? For example, your boss might offer you a **1-week vacation now** or a **2-week vacation a year from now**. Can we compute the "present value" of a 2-week vacation a year from now? The answer is obviously No.

Then how useful is the notion of present value in allowing us to think about intertemporal choices? The answer is: it merely suggests an *analogy*.

The discounted utility model

 $Z = \{z_1, z_2, ..., z_m\}$ set of basic outcomes $T = \{0, 1, 2, ..., n\}$ a set of dates t = 0 is now, t = 1 is one period from now ...

(z, t): outcome z experienced at date t

Preferences over the set of dated outcomes: indexed by the date at which the preferences are being considered:

 $(z,1) \succ_0 (z',2)$ means:

RESTRICTION: $(z,t) \succeq_s (z',t')$ implies that

 U_s utility function that represents the preferences at date s:

When the preferences at time s are restricted to outcomes to be experienced at time s then simpler notation $u_s(z)$:

 $u_s(z) =$

Call $u_s(z)$ the instantaneous utility of z at time s.

Begin with preferences at time 0 (the present): \gtrsim_0 represented by $U_0(\bullet)$. The **discounted or exponential utility model** assumes that these preferences have the following form:

(*)

 $(z,t) \succeq_0 (z',s)$ if and only if

Example 1. z = take online yoga class, z' = take in-person yoga class

$$(z,1) \sim_0 (z',3)$$

If her preferences satisfy the discounted utility model then

Suppose that $u_1(z) = 4$ and $u_3(z') = 6$.

- 1. Then what is her discount factor?
- 2. What is her discount rate?

$$U_0(z,t) = \delta^t u_t(z)$$

Suppose you have a choice between (z',0), (z,0) and (z,1)z' = do nothing and <math>z = carry out a particular activity $U_0(z',0) =$

 $U_0(z,0) =$

 $U_0(z,1) =$

Suppose that $u_0(z') = 0$ and $u_1(z) = u_0(z)$ so that $U_0(z,1) =$

Ranking sequence of outcomes

		Today	Tomorrow
	date	0	1
EXAMPLE 2.	Plan A	X	у
	Plan B	У	x

Suppose: $u_0(x) = u_1(x) = 4$ $u_0(y) = u_1(y) = 6$ $\delta = 0.8$.

	Today	Tomorrow
date	0	1
Plan A		
Plan B		

Extension of the discounted utility:

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

	date	0	1	2
EXAMPLE 3	Plan A	x	y	Z
	Plan B	y	Z.	x

 $U_0(\text{Plan A}) =$

 $U_{0}(\text{Plan B}) =$ Suppose $\begin{cases} \delta = 0.9, \\ u_{0}(x) = 0, u_{1}(y) = 4, u_{2}(z) = 2, \\ u_{0}(y) = 3, u_{1}(z) = 1, u_{2}(x) = 1 \end{cases}$ then

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

Time consistency of preferences

date	0	1	2	3
Plan A	_	x	y	Z.
Plan B	_	y	Z	x

Suppose that you "choose" Plan *B*:

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are **time consistent** if at date 1 you maintain the same ranking that you had at time 0:

Recall

$$U_0(z,t) =$$

Extend this to the preferences at any time *s*:

$$U_s(z,t) =$$
 assuming that

$$U_s(z,t) =$$
 assuming that $t \ge s$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A			X	У	Х
Plan B			У	Z	Х

 $U_0(\text{Plan A}) =$

 $U_1(\text{Plan A}) =$

 $U_2(\text{Plan A}) =$

And similarly for the utility of Plan B.

Now suppose that at time 0 you prefer Plan A to Plan B:

(**)

Divide both sides of (**) by δ :

Divide both sides of (**) by δ^2 :