CASE 2.2: risk aversion

Smaller example.

Changes in wealth:

$$
\begin{array}{cccc}
\text { probability } & \frac{2}{9} & \frac{4}{9} & \frac{3}{9} \\
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} \\
\text { act } \downarrow & & & \\
a & \$ 21 & \$ 0 & \$ 156 \\
b & \$ 0 & \$ 125 & \$ 0 \\
c & \$ 96 & \$ 0 & \$ 69
\end{array}
$$

Assume: $U(\$ x)=\sqrt{x}$ and initial wealth is $\$ 100$. Then

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 1. If she does not purchase information.

$$
\mathbb{E}[U(a)]=
$$

$\mathbb{E}[U(b)]=$
$\mathbb{E}[U(c)]=$

Thus she will choose
with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 2. If she purchases information $\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\}\right\}$ at price p.

- If informed that $\left\{s_{1}, s_{2}\right\}$ then the revised decision problem is:

probability		
state \rightarrow	S_{1}	S_{2}
act \downarrow		
a	$\$ 121$	$\$ 100$
b	$\$ 100$	$\$ 225$
c	$\$ 196$	$\$ 100$

$\mathbb{E}[U(a)]=$
$\mathbb{E}[U(b)]=$

$$
\mathbb{E}[U(c)]=
$$

Thus she will choose
with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

- If informed that $\left\{s_{3}\right\}$ then she will choose with a utility of

$$
\text { probability } \begin{array}{llll}
\frac{2}{9} & \frac{4}{9} & \frac{3}{9}
\end{array}
$$

Given the initial probabilities: state $\rightarrow \begin{array}{lllll} & s_{1} & s_{2} & s_{3}\end{array}$ the probability of receiving information $\left\{s_{1}, s_{2}\right\}$ is $\frac{6}{9}=\frac{2}{3}$ and the probability of receiving information $\left\{s_{3}\right\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price p is:

For example, if $p=\$ 30$ then
The maximum price the DM is willing to pay for information is given by the solution to:

Which is

Future Value and Present Value

- \$100 today, or
- \$200, 5 years from now

Reasons for preferring \$100 today:

Rephrase the choice as:

- \$100 today, but cannot be spent until 5 years from now, or
- \$200, 5 years from now

Definition: the future value of $\$ x, n$ periods from now is

$$
x(1+r)^{n}
$$

where r is the interest rate per period r.

- If $r=0.10$ (i.e. 10%) then the future value of $\$ 100$ five years from now is
- If $r=0.15$ (i.e. 15%) then the future value of $\$ 100$ five years from now is

Definition: the present value \boldsymbol{y} of $\$ x$ available n periods from now is the solution to

- If $r=0.10$ (i.e. 10%) then the present value of $\$ 200$ five years from now is
- If $r=0.15$ (i.e. 15%) then the present value of $\$ 200$ five years from now is
r is the interest rate, $\delta=\frac{1}{1+r}$ is the discount factor. Thus the present value of $\$ x$ available n periods from now is also denoted by $x \delta^{n}$.

Note that $\frac{1}{(1+r)^{n}}=\left(\frac{1}{1+r}\right)^{n}=\delta^{n}$.

Above we calculated the present value of a sum of money. We can also calculate the present value of a stream of payments:

So the present value of that income stream is

This is a sum of money that is equivalent to that income stream. Equivalent in what sense?

Suppose that $r=12 \%$ (the present is date 0):

$$
\begin{array}{ccc}
\text { date } 2 & \text { date } 3 & \text { date } 5 \\
\$ 2,000 & \$ 3,000 & \$ 3,500
\end{array}
$$

The present value of $\$ 2,000$ available at date 2 is
the present value of $\$ 3,000$ available at date 3 is
the present value of $\$ 3,500$ available at date 5 is

Put these three sums of money in three different accounts

CD1 (principal: \$1,594.39)

CD2 principal: $\$ 2,135.34$)

CD3 (principal: \$1,985.99).

After two years (at date 2) close account CD1: the balance is

After three years (at date 3) close account CD2: the balance is

After five years (at date 5) close account CD3: the balance is

What if instead of sums of money we are considering other outcomes? For example, your boss might offer you a 1-week vacation now or a 2 -week vacation a year from now. Can we compute the "present value" of a 2 -week vacation a year from now? The answer is obviously No.

Then how useful is the notion of present value in allowing us to think about intertemporal choices? The answer is: it merely suggests an analogy.

The discounted utility model

$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ set of basic outcomes $T=\{0,1,2, \ldots, n\}$ a set of dates
$t=0$ is now, $\quad t=1$ is one period from now \ldots

(z, t) : outcome z experienced at date t

Preferences over the set of dated outcomes: indexed by the date at which the preferences are being considered:
$(z, 1) \succ_{0}\left(z^{\prime}, 2\right)$ means:

RESTRICTION: $(z, t) \succsim_{s}\left(z^{\prime}, t^{\prime}\right)$ implies that
U_{s} utility function that represents the preferences at date s :

When the preferences at time s are restricted to outcomes to be experienced at time s then simpler notation $u_{s}(z)$:

$$
u_{s}(z)=
$$

Call $u_{s}(z)$ the instantaneous utility of z at time s.

Begin with preferences at time 0 (the present): \succsim_{0} represented by $U_{0}(\bullet)$. The discounted or exponential utility model assumes that these preferences have the following form:
(*)

$$
(z, t) \gtrsim_{0}\left(z^{\prime}, s\right) \text { if and only if }
$$

Example 1. $z=$ take online yoga class, $z^{\prime}=$ take in-person yoga class

$$
(z, 1) \sim_{0}\left(z^{\prime}, 3\right)
$$

If her preferences satisfy the discounted utility model then

Suppose that $u_{1}(z)=4$ and $u_{3}\left(z^{\prime}\right)=6$.

1. Then what is her discount factor?
2. What is her discount rate?

$$
U_{0}(z, t)=\delta^{t} u_{t}(z)
$$

Suppose you have a choice between $\left(z^{\prime}, 0\right),(z, 0)$ and $(z, 1)$
$z^{\prime}=$ do nothing and $\quad z=$ carry out a particular activity
$U_{0}\left(z^{\prime}, 0\right)=$
$U_{0}(z, 0)=$
$U_{0}(z, 1)=$
Suppose that $u_{0}\left(z^{\prime}\right)=0$ and $u_{1}(z)=u_{0}(z)$ so that $U_{0}(z, 1)=$

- $u_{0}(z)<\underbrace{0}_{=u_{0}\left(z^{\prime}\right)}$

$$
=u_{0}\left(z^{\prime}\right)
$$

- $u_{0}(z)>\underbrace{0}_{=u_{0}\left(z^{\prime}\right)}$

$=u_{0}\left(z^{\prime}\right)$

Ranking sequence of outcomes

Suppose: $\quad u_{0}(x)=u_{1}(x)=4 \quad u_{0}(y)=u_{1}(y)=6 \quad \delta=0.8$.

	Today	Tomorrow
date	0	1
Plan A		
Plan B		

Extension of the discounted utility:
$U_{0}(\operatorname{Plan} \mathrm{~A})=$
$U_{0}(\operatorname{Plan} \mathrm{~B})=$

EXAMPLE 3. | date | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| Plan A | x | y | z |
| Plan B | y | z | x |

$U_{0}(\operatorname{Plan} \mathrm{~A})=$
$U_{0}(\operatorname{Plan} \mathrm{~B})=$
Suppose $\left\{\begin{array}{l}\delta=0.9, \\ u_{0}(x)=0, u_{1}(y)=4, u_{2}(z)=2, \\ u_{0}(y)=3, u_{1}(z)=1, u_{2}(x)=1\end{array}\right.$ then

$U_{0}(\operatorname{Plan} \mathrm{~A})=$
$U_{0}($ Plan B$)=$

Time consistency of preferences

date	0	1	2	3
Plan A	-	x	y	z
Plan B	-	y	z	x

Suppose that you "choose" Plan B :

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are time consistent if at date 1 you maintain the same ranking that you had at time 0 :

Recall

$$
U_{0}(z, t)=
$$

Extend this to the preferences at any time s :

$$
U_{s}(z, t)=\quad \text { assuming that }
$$

$$
U_{s}(z, t)=\quad \text { assuming that } t \geq s
$$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A	--	--	x	y	x
Plan B	--	--	y	z	x
$U_{0}(\operatorname{Plan} \mathrm{~A})=$					
$U_{1}(\operatorname{Plan} \mathrm{~A})=$					

And similarly for the utility of Plan B.
Now suppose that at time 0 you prefer Plan A to Plan B:

Divide both sides of $\left({ }^{* *}\right)$ by δ :

Divide both sides of $\left({ }^{* *}\right)$ by δ^{2} :

