CASE 2.2: risk aversion

Smaller example.

Changes in wealth:

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 21$	$\$ 0$	$\$ 156$
b	$\$ 0$	$\$ 125$	$\$ 0$
c	$\$ 96$	$\$ 0$	$\$ 69$

Assume: $U(\$ x)=\sqrt{x}$ and initial wealth is $\$ 100$. Then

$$
\begin{array}{cccc}
\text { probability } & \frac{2}{9} & \frac{4}{9} & \frac{3}{9} \\
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} \\
\text { act } \downarrow & & & \\
a & \$ 121 & \$ 100 & \$ 256 \\
b & \$ 100 & \$ 225 & \$ 100 \\
c & \$ 196 & \$ 100 & \$ 169
\end{array}
$$

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 1. If she does not purchase information.
$\mathbb{E}[U(a)]=\frac{2}{9} \sqrt{121}+\frac{4}{9} \sqrt{100}+\frac{3}{9} \sqrt{256}=12.22$
$\mathbb{E}[U(b)]=\frac{2}{9} \sqrt{100}+\frac{4}{9} \sqrt{225}+\frac{3}{9} \sqrt{100}=12.22$
$\mathbb{E}[U(c)]=\frac{2}{9} \sqrt{196}+\frac{4}{9} \sqrt{100}+\frac{3}{9} \sqrt{169}=11.89$

Thus she will choose

$$
\text { either } a \text { or } b
$$

with an expected utility of

$$
12.22
$$

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 2. If she purchases information $\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\}\right\}$ at price p.

- If informed that $\left\{s_{1}, s_{2}\right\}$ then the revised decision problem is:

Thus she will choose b with an expected utility of $\frac{1}{3} \sqrt{100-p}+\frac{2}{3} \sqrt{225-p}$
 probability $\left.\begin{array}{|ccc|}\hline \frac{2}{9} & \frac{4}{9} & \frac{3}{9} \\ \hline\end{array}\right)$ the probability of receiving
information $\left\{s_{1}, s_{2}\right\}$ is $\frac{6}{9}=\frac{2}{3}$ and the probability of receiving information $\left\{s_{3}\right\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price p is:

$$
f(p)=\frac{2}{3}\left[\frac{1}{3} \sqrt{100-\rho}+\frac{2}{3} \sqrt{225-\rho}\right]+\frac{1}{3} \sqrt{256-p}
$$

For example, if $p=\$ 30$ then $f(30)=13.08>12.22$
The maximum price the DM is willing to pay for information is given by the solution to:

$$
\frac{2}{3}\left[\frac{1}{3} \sqrt{100-p}+\frac{2}{3} \sqrt{225-p}\right]+\frac{1}{3} \sqrt{256-p}=12.22
$$

Which is

Future Value and Present Value

- \$100 today, or
- \$200, 5 years from now

Reasons for preferring $\$ 100$ today:

Rephrase the choice as:

- $\$ 100$ today, but cannot be spent until 5 years from now, or
- $\$ 200,5$ years from now

Annual rate of interest: r

Definition: the future value of $\$ x, n$ periods from now is

$$
x(1+r)^{n}
$$

where r is the interest rate per period r.

- If $r=0.10$ (i.e. 10%) then the future value of $\$ 100$ five years from now is

$$
\begin{array}{r}
\$ 161.05 \quad \text { So will choose } \\
\$ 200 \text { in } 5 \text { years }
\end{array}
$$

- If $r=0.15$ (ie. 15%) then the future value of $\$ 100$ five years from now is

$$
\$ 201.14 \text { So will choose } \$ 100 \text { today }
$$

Definition: the present value \boldsymbol{y} of $\$ x$ available n periods from now is the solution to

$$
\delta=\frac{1}{1+r} \quad y(1+r)^{n}=x \quad y=\frac{x}{(1+r)^{n}}=\underbrace{\left(\frac{1}{1+r}\right)^{n}}_{\delta} x
$$

- If $r=0.10($ ie. $10 \%)$ then the present value of $\$ 200$ five years from now is

$$
\begin{array}{r}
\frac{200}{(1+0.1)^{5}}=124.18 \quad(124.18)(1+0.1)^{5} \\
=200
\end{array}
$$

- If $r=0.15$ (ie. 15%) then the present value of $\$ 200$ five years from now is

$$
\frac{200}{(1+0.15)^{5}}=99.44 \quad(99.44)(1+0.15)^{5}=
$$

r is the interest rate, $\delta=\frac{1}{1+r}$ is the discount factor. Thus the present value of
$\$ x$ available n periods from now is also denoted by $x \delta^{n}$.
Note that $\frac{1}{(1+r)^{n}}=\left(\frac{1}{1+r}\right)^{n}=\delta^{n}$.

Above we calculated the present value of a sum of money. We can also calculate the present value of a stream of payments:

So the present value of that income stream is

$$
T=x_{1} \delta+x_{2} \delta^{2}+x_{3} \delta^{3}+\cdots+x_{n} \delta^{4}
$$

This is a sum of money that is equivalent to that income stream. Equivalent in what sense?

Suppose that $r=12 \%$ (the present is date 0):

$$
\begin{array}{ccc}
\text { date } 2 & \text { date } 3 & \text { date } 5 \\
\$ 2,000 & \$ 3,000 & \$ 3,500
\end{array}
$$

The present value of $\$ 2,000$ available at date 2 is $2000\left(\frac{1}{1.12}\right)^{2}=1,594.39$ the present value of $\$ 3,000$ available at date 3 is $3000\left(\frac{1}{1.12}\right)^{3}=2,135.34$ the present value of $\$ 3,500$ available at date 5 is $3300\left(\frac{1}{1.12}\right)^{5}=1,985.99$

Put these three sums of money in three different accounts
CD1 (principal: $\$ 1,594.39$) matures in 2 years
CD 2 principal: $\$ 2,135.34$) 113 year
CD3 (principal: \$1,985.99). $11 \quad 5$ years
balaue
2,000 dater
3,000 date 3
3,500 dare 5

After two years (at date 2) close account CD1: the balance is

After three years (at date 3) close account CD2: the balance is

After five years (at date 5) close account CD3: the balance is

What if instead of sums of money we are considering other outcomes? For example, your boss might offer you a 1-week vacation now or a 2 -week vacation a year from now. Can we compute the "present value" of a 2 -week vacation a year from now? The answer is obviously No.

Then how useful is the notion of present value in allowing us to think about intertemporal choices? The answer is: it merely suggests an analogy.

