CASE 2.2: risk aversion

Smaller example.

		1	probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$	
			state \rightarrow	S_1	S ₂	<i>S</i> ₃	
Changes in wealth:			act↓				
			а	\$21	\$0	\$156	
			b	\$0	\$125	\$0	
			С	\$96	\$0	\$69	
Assume: $U(\$x) = \sqrt{x}$	and initial we	ealth is $\frac{2}{9}$	$\frac{100}{9}$ The	$\frac{3}{9}$			add iuihiul
	state \rightarrow	S_1	S_2	<i>S</i> ₃			Wealty
	act ↓						18 Each
	a	\$121	\$100	\$256		5	ourcome
	b	\$100	\$225	\$100			
	С	\$196	\$100	\$169			

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	S_1	<i>S</i> ₂	<i>S</i> ₃
act \downarrow			
a	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 1. If she does **not purchase** information.

$$\mathbb{E}[U(a)] = \frac{2}{9}\sqrt{121} + \frac{4}{9}\sqrt{100} + \frac{3}{9}\sqrt{256} = 12.22$$

$$\mathbb{E}[U(b)] = \frac{2}{9}\sqrt{100} + \frac{4}{9}\sqrt{225} + \frac{3}{9}\sqrt{100} = 12.22$$

$$\mathbb{E}[U(c)] = \frac{2}{9}\sqrt{196} + \frac{4}{9}\sqrt{100} + \frac{3}{9}\sqrt{169} = 11.89$$

Thus she will choose with an expected utility of 12.22

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	S_1	<i>S</i> ₂	<i>S</i> ₃
act \downarrow			
a	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 2. If she purchases information $\{\{s_1, s_2\}, \{s_3\}\}$ at price *p*.

• If informed that $\{s_1, s_2\}$ then the revised decision problem is:

probability
$$\frac{2}{6} + \frac{4}{6} = \begin{pmatrix} 0 \\ s_3 \end{pmatrix}^{2+4=6}$$

state $\rightarrow s_1 + s_2 = \begin{pmatrix} 0 \\ s_3 \end{pmatrix}^{2+4=6}$
act \downarrow
act \downarrow
a \$121 \$100
b \$100 \$225
c \$196 \$100
 $\mathbb{E}[U(a)] = (\frac{1}{3}\sqrt{121-P} + (\frac{1}{3}\sqrt{100-P} + \frac{1}{2}\sqrt{100-P})$
 $\mathbb{E}[U(b)] = \frac{1}{3}\sqrt{100-P} + (\frac{1}{3}\sqrt{225-P}) + (\frac{1}{3}\sqrt{225-P})$
 $\mathbb{E}[U(c)] = (\frac{1}{3}\sqrt{196-P} + (\frac{1}{3}\sqrt{100-P} + \frac{1}{3}\sqrt{100-P})$
Thus she will choose b with an expected utility of $\frac{1}{3}\sqrt{100-P} + \frac{2}{3}\sqrt{225-P}$

 $\frac{2}{9}$ $\frac{4}{9}$ $\frac{3}{9}$ probability state \rightarrow $S_1 \qquad S_2$ S_3 act \downarrow \$256 \$100 \$121 4 а \$100 \$100 \$225 h \$100 \$196 \$169 С If informed that $\{s_3\}$ then she will choose c_1 with a utility of V 256-p probability $\begin{pmatrix} \frac{2}{9} & \frac{4}{9} & \frac{3}{9} \\ state \rightarrow s_1 & s_2 & s_3 \end{pmatrix}$ the probability of receiving Given the initial probabilities: information $\frac{\{s_1, s_2\}}{9}$ is $\frac{6}{9} = \frac{2}{3}$ and the probability of receiving information $\{s_3\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price *p* is: $f(p) = \frac{2}{3} \left[\frac{1}{3} \sqrt{100-p} + \frac{2}{3} \sqrt{225-p} \right] + \frac{1}{3} \sqrt{256-p}$ Yes For example, if p = \$30 then f(30) = (13.08)12.22 nformation The maximum price the DM is willing to pay for information is given by the solution to: $\frac{2}{3}\left[\frac{1}{3}\sqrt{100-p} + \frac{2}{3}\sqrt{225-p}\right] + \frac{1}{3}\sqrt{256-p} =$ 12.22

Which is

Future Value and Present Value

- \$100 today, or
- \$200, 5 years from now

Reasons for preferring \$100 today:

Rephrase the choice as:

- \$100 today, but cannot be spent until 5 years from now, or
- \$200, 5 years from now

Definition: the *future value* of x, *n* periods from now is

$$x(1+r)^n$$

where r is the interest rate per period r.

• If r = 0.10 (i.e. 10%) then the future value of \$100 five years from now is

• If r = 0.15 (i.e. 15%) then the future value of \$100 five years from now is

Definition: the *present value* y of x available n periods from now is the solution to

$$\frac{200}{(1+0.1)^5} = 124.18 (124.18)(1+0.1)^3 = 200$$

• If r = 0.15 (i.e. 15%) then the present value of \$200 five years from now is

$$\frac{200}{(1+0.15)^5} = 99.44 \qquad (99.44)(1+0.15)^5 = 200$$

r is the interest **rate**, $\delta = \frac{1}{1+r}$ is the discount **factor**. Thus the present value of S^n

\$x available *n* periods from now is also denoted by $x \delta^n$.

Note that
$$\frac{1}{(1+r)^n} = \left(\frac{1}{1+r}\right)^n = \delta^n$$
.

Above we calculated the present value of a sum of money. We can also calculate the present value of a **stream of payments**:

So the present value of that income stream is

 $T = x_{1} \delta + x_{2} \delta^{2} + x_{3} \delta^{3} + \dots + x_{u} \delta^{u}$

This is a sum of money that is **equivalent to that income stream**. Equivalent in what sense?

Suppose that r = 12% (the present is date 0):

date 2	date 3	date 5
\$2,000	\$3,000	\$3,500

The present value of \$2,000 available at date 2 is $2 \cos \left(\frac{1}{1.12}\right)^2 = 1.594.39$

the present value of \$3,000 available at date 3 is

the present value of \$3,500 available at date 5 is

 $3500\left(\frac{1}{1.12}\right)^5 = 1,985.99$

 $3000\left(\frac{1}{1.12}\right)^3 = 2,135.34$

Put these three sums of mone	balance		
CD1 (principal: \$1,594.39)	matures	in z years	2,000 date2
CD2 principal: \$2,135.34)	(1	3 years	3,000 dante 3
CD3 (principal: \$1,985.99).	Ιı.	5 years	3,500 dates

After two years (at date 2) close account CD1: the balance is

After three years (at date 3) close account CD2: the balance is

After five years (at date 5) close account CD3: the balance is

What if instead of sums of money we are considering other outcomes? For example, your boss might offer you a **1-week vacation now** or a **2-week vacation a year from now**. Can we compute the "present value" of a 2-week vacation a year from now? The answer is obviously No.

Then how useful is the notion of present value in allowing us to think about intertemporal choices? The answer is: it merely suggests an *analogy*.