We say that two events A and B are independent if

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{*}
\end{equation*}
$$

It follows from this and the definition of conditional probability that if A and B are independent then

$$
P(A \mid B)=P(A) \text { and } P(B \mid A)=P(B) \quad\left({ }^{* *}\right)
$$

Alternatively, one can take one of the two equalities in $\left({ }^{* *}\right)$ as definition of independence and derive both the other and $\left({ }^{*}\right)$. Thus $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are equivalent.

Going back to our example where $S=\{a, b, c, d, e, f, g\}, A=\{a, c, d, e\}, B=\{a, e, g\}, A \cap B=\{a, e\}$ and

$$
\begin{aligned}
& \begin{array}{lllllll}
a & b & c & d & e & f & g
\end{array} \\
& =\frac{8}{14}=\frac{10}{14} \quad \frac{1}{14} \quad \frac{2}{14} \quad 0 \quad \frac{1}{14} \quad \frac{6}{14} \quad \frac{1}{14} \quad \frac{3}{14} \\
& \begin{array}{l}
P(A)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}, \quad P(B)=\frac{1}{14}+\frac{6}{14}+\frac{3}{14}, \quad P(A \cap B)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14} \quad P(A) P(B)=\frac{8}{14} \cdot \frac{10}{14}=\frac{80}{14^{2}} \\
\text { On the other hand, if } S=\{a, b, c, d, e, f, g, h, i\} \text { and }
\end{array} \\
& \text { not indopeadent } \\
& \begin{array}{lllllllll}
a & b & c & d & e & f & g & h & i
\end{array} \\
& \begin{array}{lllllllll}
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{2}{9} & 0 & \frac{2}{9} & 0 & \frac{1}{9} & \frac{1}{9}
\end{array}
\end{aligned}
$$

Then $E=\{a, b, c, e\}$ and $F=\{c, d, e, g\}$ are independent. In fact, $P(E)=\frac{1}{3} \quad, P(F)=\frac{1}{3} \quad$, $E \cap F=\{c, e\}, P(E \cap F)=\frac{1}{9} \quad$ and thus $\underbrace{P(E \cap F)}_{\frac{1}{9}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}}=\underbrace{P(E) P(F)}$.
E and F are independent

Let E and F be two events such that $P(E)>0$ and $P(F)>0$. Then

$$
\begin{equation*}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} \tag{1}
\end{equation*}
$$

Assuming

$$
P(F) \neq 0
$$

and

From (2) we get that

Substituting (3) into (1) we get
multiply both sides by $P(E)$

$$
P(F \mid E) P(E)=P(E \cap F)
$$

put it in the numerator of (1)

Bayes' formula (4)
note Mar $F \cap E=E \cap F$ So $P(F \cap E)=P(E \cap F)$,
$P(E) \neq 0$
A ssuming $P(E) \neq 0$
(4)

Example: $D=$ you have a disease
$\rightarrow D=$ you don't have the disease
$+=$ you test positive

- = you test negative

Information: $P(D)=5 \%$ base rate $\Rightarrow 100 \%-5 \%=95 \%$
sensitivity of the test: $P(+\mid D)=92 \%$
specificity of the test: $P(-\mid \neg D)=88 \%$

$$
\begin{aligned}
& P(D \mid+)=\frac{P(+\mid D) P(D)}{P(t)} \quad \begin{array}{c}
P(+\mid>D)=100 \%-88 \% \\
\text { by Bayes' rule }
\end{array} \\
& \text { by }
\end{aligned}
$$

$$
t=(t \cap D) \cup(+\cap \neg D) \quad \text { disjoint }
$$

$$
P(t)=P(+\cap D)+P(t \cap \neg D)
$$

$$
P(+\cap D)=P(+\mid D) P(D)
$$

$$
P(+\cap \neg D)=P(+\mid \neg D) P(\neg D)
$$

$$
P(D \mid+)=\frac{\frac{92}{100} \cdot \frac{5}{100}}{\frac{92}{100} \cdot \frac{5}{100}+\frac{12}{100} \cdot \frac{95}{100}}+
$$

Bayes' theorem

Bayes' formula says that $P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}$. From set theory we have that, given any two sets A and B,

$$
\begin{equation*}
A=(A \cap B) \cup(A \cap \neg B) \tag{5}
\end{equation*}
$$

$$
(A \cap B) \cap(A \cap>B)=\phi
$$

Hence in the denominator of Bayes' formula we can replace $P(F)$ with
Then, using conditional probability we get that $P(F \cap E)=$ and
$P(F \cap \neg E)=$

Thus

$$
P(F)=
$$

Replacing this in Bayes' formula we get

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P(F \mid \neg E) P(\neg E)}
$$

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P(F \mid \neg E) P(\neg E)}
$$

EXAMPLE.

Enrollment in a class is as follows: 60% econ majors $(E), 40 \%$ other majors $(\neg E)$. In the past, 80% of the econ majors passed and 65% of the other majors passed. A student tells you that she passed the class. What is the probability that she is an econ major? Let P stand for "Pass the class".

$$
\begin{aligned}
P\left(E \mid P_{a s s}\right) & =\frac{P\left(P_{a, 1} \mid E\right) \cdot P(E)}{P\left(P_{a, w} \mid E\right) \cdot P(E)+P\left(P_{a s s} \mid \neg E\right) P(\neg E)} \\
& =\frac{\frac{80}{100} \frac{60}{100}}{\frac{80}{100} \cdot \frac{60}{100}+\frac{65}{100} \cdot \frac{40}{100}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
P(E)=\frac{60}{100} \quad P(\neg E)=\frac{40}{100} \\
P\left(P_{\text {ass }} \mid E\right)=\frac{80}{100} \\
P\left(P_{\text {ass }} \mid \neg E\right)=\frac{65}{100}
\end{array}\right\}
$$

Back to previous examples

EXAMPLE 1. Testing for a disease

Base rate of a disease: percentage of the population that has the disease
Sensitivity of a test: percentage of those who have the disease that tests positive
Specificity of a test: percentage of those who do not have the disease that tests negative
Suppose:

$$
\begin{array}{ll}
\text { Base rate }=6 \%=P(D) & P(\neg D)=94 \% \\
\text { Sensitivity }=88 \%=P(+\mid D) & P(-\mid D)=12 \% \\
\text { Specificity }=93 \%=P(-\mid>D) & P(+\mid>D)=7 \%
\end{array}
$$

Suppose you test positive. What is the probability that you have the disease?
Previous analysis:

$$
P(D \mid+)=\frac{P(+\mid D) P(D)}{P(+\mid D) P(D)+P(+\mid \neg D) P(\neg D)}
$$

$P(D \mid+)$
88.6

The probability of having the disease, conditional on testing positive is:

$$
\frac{528 \frac{N}{10,000}}{528 \frac{N}{10,000}+658 \frac{N}{10,000}}=\frac{528 \frac{N}{10,000}}{1,186 \frac{N}{10,000}}=\frac{528}{1,186}=0.4452=44.52 \%
$$

EXAMPLE 2. More than two categories

Base rates of seniors who graduated within the past 6 months:

CS	Econ	Hist	Math
28%	40%	12%	20%

Percentages of those who found a job within 6 months of graduation by major:

$$
\begin{array}{ccccc}
\text { Major: } & C S & \text { Econ } & \text { Hist } & \text { Math } \\
\text { \% who found a job: } & 95 \% & 80 \% & 70 \% & 78 \%
\end{array}
$$

You learn that Ann graduated 6 months ago and has already found a job. What is the probability that Ann is an Econ major?

The probability of Ann being and Econ major, given that she found a job is thus:

$$
\frac{320}{266+320+84+156}=\frac{320}{826}=0.3874=38.74 \%
$$

$\begin{array}{llll}E_{1} & E_{2} & E_{3} & E_{4}\end{array}$
$E_{1} \cap E_{2}=\phi$
CS Econ Hist Math
$E_{1} \cap E_{3}=\phi$
$E_{1} \cap E_{4} \neq \phi \quad E_{2} \cap E_{4}=\phi$
Major: CS Econ Hist Math
$E_{3 \cap E_{4}=\phi}$
\% who found a job: $95 \% \quad 80 \% \quad 70 \% \quad 78 \%$

$$
E_{1} \cup E_{2} \cup E_{3} \cup E_{4}=S
$$

Now we need a version of Bayes' rule that allows for more than two conditioning events.
Let S be the set of states and $\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a partition of S, that is,

- $E_{1} \cup E_{2} \cup \ldots \cup E_{m}=S$
- For all $i, j \in\{1,2, \ldots m\}$ with $i \neq j, E_{i} \cap E_{j}=\varnothing$

Let $F \subseteq S$ be an arbitrary event. Then
$F=\left(F \cap E_{1}\right) \cup\left(F \cap E_{2}\right) \cup \ldots \cup\left(F \cap E_{m}\right)$, all disjoint events. Thus

$$
P(F)=\underbrace{P\left(F \cap E_{1}\right)}+\underbrace{P\left(F \cap E_{2}\right)}+\ldots+\underbrace{P\left(F \cap E_{m}\right)}
$$

$$
\text { for } i=1, \ldots, n
$$

$$
P\left(F \mid E_{i}^{\prime}\right) P\left(E_{i}\right)
$$

$$
\overline{P\left(F \mid E_{1}\right) P\left(E_{1}\right)+P\left(F \mid E_{2}\right) P\left(E_{2}\right)+\cdots+P\left(F\left(E_{n}\right) P\left(E_{n}\right)\right.}
$$

$$
\begin{array}{cccc}
C S & \text { Econ } & \text { Hist } & \text { Math } \\
28 \% & 40 \% & 12 \% & 20 \%
\end{array}
$$

and, by hypothesis, CS, ECN, HIS, MAT is an exhaustive list of majors:

$$
P(C S)=\frac{28}{100}, \quad P(E C N)=\frac{40}{100}, \quad P(H I S)=\frac{12}{100}, \quad P(M A T)=\frac{20}{100}
$$

Major: CS Econ Hist Math
$\%$ who found a job: $95 \% \quad 80 \% \quad 70 \% \quad 78 \%$

$$
\begin{array}{lll}
P(J \mid C S)=\frac{95}{100}, & P(J \mid E C N)=\frac{80}{100}, & P(J \mid H I S)=\frac{70}{100},
\end{array} \quad P(J \mid M A T)=\frac{78}{100}, ~ P(\neg J \mid C S)=\frac{5}{100}, \quad P(\neg J \mid E C N)=\frac{20}{100}, \quad P(\neg J \mid H I S)=\frac{30}{100}, \quad P(\neg J \mid M A T)=\frac{12}{100}
$$

Thus

$$
\begin{aligned}
P(E C N \mid J)= & \frac{P(J \mid E C N) P(E C N)}{P(J \mid C S) P(C S)+P(J \mid E C N) P(E C N)+P(J \mid H I S) P(H I S)+P(J \mid M A T) P(M A T)} \\
& =\frac{\frac{80}{100} \times \frac{40}{100}}{\frac{95}{100} \times \frac{28}{100}+\frac{80}{100} \times \frac{40}{100}+\frac{70}{100} \times \frac{12}{100}+\frac{78}{100} \times \frac{20}{100}}=0.3874=38.74 \%
\end{aligned}
$$

