MORE THAN TWO CATEGORIES

Enrollment in a class

$$
\begin{array}{cccc}
E C N & \text { ARE } & \text { PSY } & \text { Other } \\
38 \% & 20 \% & 12 \% & 30 \%
\end{array}
$$

Percentages of those who passed:

major	$E C N$	$A R E$	$P S Y$	Other
percentage who passed	70%	60%	40%	35%

You learn that Ann passed the class. How likely is it that Ann is a PSY major?

major	$E C N$	ARE	PSY	Other	Ann passed the class. How likely is it that she is a PSY enrollment
percentage who passed	38%	20%	12%	30%	major?

Probability and conditional probability

Finite set of states $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Subsets of S are called events.
Probability distribution over S :

$$
\begin{array}{llll}
s_{1} & s_{2} & \ldots & s_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}
$$

Denote the probability of state s by $p(s)$.
Given an event $E \subseteq S$, the probability of E is:

$$
P(E)= \begin{cases}\text { if } \\ & \text { if }\end{cases}
$$

Denote by $\neg E$ the complement of $E \subseteq S$.

Example

$$
\begin{array}{lll}
S=\{a, b, c, d, e, f, g\} & A=\{a, c, d, e\} & B=\{a, e, g\} \\
\neg A= & \neg B= &
\end{array}
$$

Given

$$
\begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array}
$$

$$
P(A)=
$$

$$
P(B)=
$$

$A \cap B=$

$$
P(A \cap B)=
$$

$A \cup B=$

$$
P(A \cup B)=
$$

Note: for every two events E and F :

$$
P(E \cup F)=
$$

We denote by $P(E \mid F)$ the probability of E conditional on F and define it as:

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

Continuing the example above where $\begin{array}{ccccccc}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}\end{array} \quad A=\{a, c, d, e\} \quad B=\{a, e, g\}$

$$
P(A)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}=\frac{8}{14}, \quad P(B)=\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\frac{10}{14}, \quad P(A \cap B)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}
$$

$$
P(A \mid B)=
$$

$$
P(B \mid A)=
$$

The conditional probability formula can also be applied to individual states:

$$
p(s \mid E)= \begin{cases} & \text { if } \\ & \text { if }\end{cases}
$$

We can think of $p(\cdot \mid E)$ as a probability distribution on the entire set S. Continuing the example above where $S=\{a, b, c, d, e, f, g\}, \quad A=\{a, c, d, e\}$ and $\begin{array}{ccccccc}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}\end{array} \quad$ (so that $P(A)=\frac{8}{14}$)

$$
\begin{array}{rlllllll}
& a & b & c & d & e & f & g \\
p(\cdot \mid A): & & & & & & & \\
& & & & & &
\end{array}
$$

Shortcut to obtain the revised or updated probabilities:

Initial or prior probabilities. Note that here they all have the same denominator.	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{100} & \frac{70}{100} & \frac{5}{100} & \frac{10}{100}\end{array}\right)$
Information or conditioning event: $F=\{a, b, d\}$	
STEP 1. Set the probability of every state which is not in F to zero:	$\left(\begin{array}{llll}a & b & c & d \\ & & 0 & \end{array}\right)$
STEP 2. For the other states write new fractions with the same numerators as before:	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{\ldots} & \frac{70}{\ldots} & 0 & \frac{10}{\ldots}\end{array}\right)$
STEP 3. In every denominator put the sum of the numerators: $15+70+10=95$. Thus the updated probabilities are:	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{95} & \frac{70}{95} & 0 & \frac{10}{95}\end{array}\right)$

In the above example, where $\begin{array}{ccccccc}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}\end{array}$ and $A=\{a, c, d, e\}$, to compute $p(\cdot \mid A)$
Step 1: assign zero probability to states in $\neg A$:

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g
\end{array}
$$

Step 2: keep the same numerators for the states in A :

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
& 0 & & & & 0 & 0
\end{array}
$$

Step 3: since the sum of the numerators is 8 , put 8 as the denominator:

$$
\begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{8} & 0 & 0 & \frac{1}{8} & \frac{6}{8} & 0 & 0
\end{array}
$$

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

Initial or prior probabilities:	$\left(\begin{array}{cccccc}a & b & c & d & e & f \\ \frac{3}{20} & \frac{3}{10} & \frac{1}{20} & 0 & \frac{2}{5} & \frac{1}{10}\end{array}\right)$
Information:	$F=\{a, b, d, e\}$
STEP 0. Rewrite all the probabilities with the same denominator:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ & & & & & \\ & & & & & \end{array}\right)$
STEP 1. Change the probability of every state which is not in F to zero:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ & & & & & \\ & & 0 & & & 0\end{array}\right)$
STEP 2. Write new fractions which have the same numerators as before:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ & & & & & \\ & & 0 & & & 0\end{array}\right)$
STEP 3. In every denominator put the sum of the numerators: $3+6+8=17$.	$\left(\begin{array}{cccccc}a & b & c & d & e & f \\ \frac{3}{17} & \frac{6}{17} & 0 & 0 & \frac{8}{17} & 0\end{array}\right)$

Page 6 of 11

INDEPENDENT EVENTS.

We say that two events A and B are independent if

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{*}
\end{equation*}
$$

It follows from this and the definition of conditional probability that if A and B are independent then

$$
P(A \mid B)=P(A) \text { and } P(B \mid A)=P(B) \quad(* *)
$$

Alternatively, one can take one of the two equalities in $\left({ }^{* *}\right)$ as definition of independence and derive both the other and $\left(^{*}\right)$. Thus $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are equivalent.

Going back to our example where $S=\{a, b, c, d, e, f, g\}, A=\{a, c, d, e\}, B=\{a, e, g\}, A \cap B=\{a, e\}$ and

$$
\begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array}
$$

$P(A)=$
, $P(B)=$
, $P(A \cap B)=$
$P(A) P(B)=$

On the other hand, if $S=\{a, b, c, d, e, f, g, h, i\}$ and

$$
\begin{array}{ccccccccc}
a & b & c & d & e & f & g & h & i \\
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{2}{9} & 0 & \frac{2}{9} & 0 & \frac{1}{9} & \frac{1}{9}
\end{array}
$$

Then $E=\{a, b, c, e\}$ and $F=\{c, d, e, g\}$ are independent. In fact, $P(E)=$

$$
, P(F)=
$$

$E \cap F=\{c, e\}, P(E \cap F)=\quad$ and thus $P(E \cap F)=P(E) P(F)$.

Bayes' formula

Let E and F be two events such that $P(E)>0$ and $P(F)>0$. Then

$$
\begin{equation*}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P(F \mid E)=\frac{P(E \cap F)}{P(E)} \tag{2}
\end{equation*}
$$

From (2) we get that

Substituting (3) into (1) we get

Bayes' theorem

Bayes' formula says that $P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}$. From set theory we have that, given any two sets A and B,

$$
\begin{equation*}
A=(A \cap B) \cup(A \cap \neg B) \tag{5}
\end{equation*}
$$

and the two sets $(A \cap B)$ and $(A \cap \neg B)$ are disjoint. Thus $P(A)=P(A \cap B)+P(A \cap \neg B)$.

Hence in the denominator of Bayes' formula we can replace $P(F)$ with

Then, using conditional probability we get that $P(F \cap E)=$ and
$P(F \cap \neg E)=$

Thus

$$
P(F)=
$$

Replacing this in Bayes' formula we get

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P(F \mid \neg E) P(\neg E)}
$$

EXAMPLE.

Enrollment in a class is as follows: 60% econ majors $(E), 40 \%$ other majors $(\neg E)$. In the past, 80% of the econ majors passed and 65% of the other majors passed. A student tells you that she passed the class. What is the probability that she is an econ major? Let P stand for "Pass the class".
$P(E \mid P)=$

