MORE THAN TWO CATEGORIES

Enrollment in a class

ECN	ARE	PSY	Other
38%	20%	12%	30%

Percentages of those who passed:

major	ECN	ARE	PSY	Other
percentage who passed	70%	60%	40%	35%

You learn that Ann passed the class. How likely is it that Ann is a PSY major?

major	ECN	ARE	PSY	Other	Ann passed the class. How likely is it that she is a PSY
enrollment	38%	20%	12%	30%	major?
percentage who passed	70%	60%	40%	35%	

Probability and conditional probability

Finite set of *states* $S = \{s_1, s_2, ..., s_n\}$. Subsets of *S* are called *events*.

Probability distribution over *S*:

Denote the probability of state s by p(s).

Given an event $E \subseteq S$, the probability of *E* is:

$$P(E) = \begin{cases} & \text{if} \\ & &$$

Denote by $\neg E$ the complement of $E \subseteq S$.

Example

 $S = \{a, b, c, d, e, f, g\}$ $A = \{a, c, d, e\}$ $B = \{a, e, g\}$ $\neg A = \neg B =$ Given

P(B) =

 $A \cap B = \qquad \qquad P(A \cap B) =$

 $A \cup B = P(A \cup B) =$

Note: for every two events *E* and *F*:

$$P(E \cup F) =$$

•

We denote by P(E|F) the probability of *E* conditional on *F* and define it as:

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

Continuing the example above where $\begin{array}{cccc} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{array} \quad A = \{a, c, d, e\} \qquad B = \{a, e, g\}$ $P(A) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} = \frac{8}{14}, \quad P(B) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}, \quad P(A \cap B) = \frac{1}{14} + \frac{6}{14} = \frac{7}{14}$

 $P(A \mid B) =$

```
P(B \mid A) =
```

The conditional probability formula can also be applied to individual states:

$$p(s \mid E) = \begin{cases} & \text{if} \\ & \text{if} \end{cases}$$

We can think of $p(\cdot | E)$ as a probability distribution on the entire set S. Continuing the example above

where
$$S = \{a, b, c, d, e, f, g\}$$
, $A = \{a, c, d, e\}$ and $\begin{bmatrix} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{bmatrix}$ (so that $P(A) = \frac{8}{14}$)
 $a & b & c & d & e & f & g$
 $p(\bullet|A)$:

Shortcut to obtain the revised or updated probabilities:

Initial or prior probabilities. Note that here they all have the same denominator .	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{100} & \frac{70}{100} & \frac{5}{100} & \frac{10}{100} \end{pmatrix} $
Information or conditioning event: $F = \{a, b, d\}$	
STEP 1. Set the probability of every state which is not in <i>F</i> to zero:	$\left(\begin{array}{ccc} a & b & c & d \\ & & 0 & \end{array}\right)$
STEP 2. For the other states write new fractions with the same numerators as before:	$ \begin{pmatrix} a & b & c & d \\ 15 & 70 & 0 & \frac{10}{} \end{pmatrix} $
STEP 3. In every denominator put the sum of the numerators: 15+70+10=95. Thus the updated probabilities are:	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{95} & \frac{70}{95} & 0 & \frac{10}{95} \end{pmatrix} $

In the above example, where $\begin{array}{ccccc} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{array} \text{ and } A = \{a, c, d, e\}, \text{ to compute } p(\bullet|A)$

Step 1: assign zero probability to states in $\neg A$:

Step 2: keep the same numerators for the states in *A*:

Step 3: since the sum of the numerators is 8, put 8 as the denominator:

a	b	С	d	е	f	g
$\frac{1}{8}$	0	0	$\frac{1}{8}$	$\frac{6}{8}$	0	0

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

Initial or prior probabilities:	$\begin{pmatrix} a \\ \frac{3}{20} \end{pmatrix}$	$\frac{b}{\frac{3}{10}}$	$\frac{c}{\frac{1}{20}}$	<i>d</i> 0	e $\frac{2}{5}$	$\begin{pmatrix} f \\ \frac{1}{10} \end{pmatrix}$
Information:		<i>F</i> =	$=\{a,b\}$	<i>,d</i> ,	e}	
STEP 0. Rewrite all the probabilities with the same denominator:	(a	b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 1. Change the probability of every state which is not in <i>F</i> to zero:	(a	b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 2. Write new fractions which have the same numerators as before:	a	b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 3 . In every denominator put the sum of the numerators: 3+6+8=17.	$\begin{pmatrix} a \\ \frac{3}{17} \end{pmatrix}$	$\frac{b}{\frac{6}{17}}$	с 0	d 0	e $\frac{8}{17}$	$\begin{pmatrix} f \\ 0 \end{pmatrix}$

INDEPENDENT EVENTS.

We say that two events *A* and *B* are independent if

$$P(A \cap B) = P(A) P(B) \tag{*}$$

It follows from this and the definition of conditional probability that if A and B are independent then

$$P(A | B) = P(A)$$
 and $P(B | A) = P(B)$ (**)

Alternatively, one can take one of the two equalities in (**) as definition of independence and derive both the other and (*). Thus (*) and (**) are equivalent.

Going back to our example where $S = \{a, b, c, d, e, f, g\}$, $A = \{a, c, d, e\}$, $B = \{a, e, g\}$, $A \cap B = \{a, e\}$ and

On the other hand, if $S = \{a, b, c, d, e, f, g, h, i\}$ and

a	b	С	d	е	f	g	h	i
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	0	$\frac{2}{9}$	0	$\frac{1}{9}$	$\frac{1}{9}$

,

Then $E = \{a, b, c, e\}$ and $F = \{c, d, e, g\}$ are independent. In fact, P(E) =, P(F) =

 $E \cap F = \{c, e\}, P(E \cap F) =$ and thus $P(E \cap F) = P(E)P(F)$.

Bayes' formula

Let *E* and *F* be two events such that P(E) > 0 and P(F) > 0. Then

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)} \tag{1}$$

and

$$P(F \mid E) = \frac{P(E \cap F)}{P(E)} \tag{2}$$

From (2) we get that

(3)

Substituting (3) into (1) we get

Bayes' formula (4)

Bayes' theorem

Bayes' formula says that $P(E|F) = \frac{P(F|E)P(E)}{P(F)}$. From set theory we have that, given any two sets A and B, $A = (A \cap B) \cup (A \cap \neg B)$ (5)

and the two sets $(A \cap B)$ and $(A \cap \neg B)$ are disjoint. Thus $P(A) = P(A \cap B) + P(A \cap \neg B)$.

Hence in the denominator of Bayes' formula we can replace P(F) with

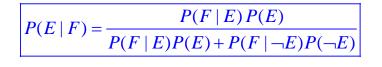
Then, using conditional probability we get that
$$P(F \cap E) =$$
 and $P(F \cap \neg E) =$

Thus

$$P(F) =$$

Replacing this in Bayes' formula we get

Bayes' theorem (6)



EXAMPLE.

Enrollment in a class is as follows: 60% econ majors (*E*), 40% other majors ($\neg E$). In the past, 80% of the econ majors passed and 65% of the other majors passed. A student tells you that she passed the class. What is the probability that she is an econ major? Let *P* stand for "Pass the class".

 $P(E \,|\, P) =$