MORE THAN TWO CATEGORIES

Enrollment in a class

ECN	ARE	PSY	Other
38%	20%	12%	30%

Percentages of those who passed:

major	ECN	ARE	PSY	Other
percentage who passed	70%	60%	40%	35%

You learn that Ann passed the class. How likely is it that Ann is a PSY major?

Probability and conditional probability

Finite set of *states* $S = \{s_1, s_2, ..., s_n\}$. Subsets of *S* are called *events*.

Probability distribution over S: $s_{1} \quad s_{2} \quad \dots \quad s_{n}$ $p_{1} \quad p_{2} \quad \dots \quad p_{n}$ $P_{1} + p_{2} + \dots + p_{n} = 1$ $P_{1} + p_{2} + \dots + p_{n} = 1$

Denote the probability of state s by p(s).

Given an event $E \subseteq S$, the probability of *E* is:

Example

 $S = \{a, b, c, d, e, f, g\} \qquad A = \{a, c, d, e\} \qquad B = \{a, e, g\} \\ \neg A = \{b, f, g\} \qquad \neg B = \{b, c, d, F\}$

Given

$$a \ b \ c \ d \ e \ f \ g$$

$$\frac{1}{14} \ \frac{2}{14} \ 0 \ \frac{1}{14} \ \frac{6}{14} \ \frac{1}{14} \ \frac{3}{14}$$

$$P(7A) = p(b) + p(F) + p(g) = \frac{2}{14} + \frac{1}{14} + \frac{3}{14} = \frac{6}{14} = 1 - P(A)$$

$$P(A) = p(c) + p(c) + p(d) + p(e) \qquad P(B) = p(a) + p(e) + p(g) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}$$

$$P(A) = p(c) + p(c) + p(d) + p(e) \qquad P(B) = p(a) + p(e) + p(g) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}$$

$$P(A - B) = p(a) + p(e) = \frac{1}{14} + \frac{6}{14} = \frac{7}{14}$$

$$P(A - B) = p(a) + p(e) = \frac{1}{14} + \frac{6}{14} = \frac{7}{14}$$

$$P(A - B) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} = \frac{11}{14} + \frac{6}{14} = \frac{11}{14} + \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} = \frac{11}{14} + \frac{1}{14} = \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} + \frac{1}{14} = \frac{1}{14} = \frac{1}{14} + \frac{1}{1$$

Note: for every two events *E* and *F*:

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

if E and F are disjoint i.e. ENF = Ø then P(EVF) = P(E)+P(F)

We denote by P(E|F) the probability of *E* conditional on *F* and define it as:

$$P(E | F) = \frac{P(E \cap F)}{P(F)}$$
Assuming that $P(F) \neq 0$
Continuing the example above where $\frac{a \ b \ c \ d \ e \ f \ g}{\frac{1}{14} \ \frac{1}{2} \ 0 \ \frac{1}{14} \ \frac{6}{14} \ \frac{1}{14} \ \frac{1}{2} \ \frac{1}{2} \ 0 \ \frac{1}{14} \ \frac{6}{14} \ \frac{1}{14} \ \frac{1}{2} \ \frac{1}{2} \ 0 \ \frac{1}{14} \ \frac{6}{14} \ \frac{1}{14} \ \frac{1}{2} \ \frac{$

We can think of $p(\cdot | E)$ as a probability distribution on the entire set S. Continuing the example above

where
$$S = \{a, b, c, d, e, f, g\}$$
, $A = \{a, c, d, e\}$ and $a = b = c = d = f = g$
 $a = b = c = d = f = g$ (so that $P(A) = \frac{1}{|A|}$)
 $a = b = c = d = f = g$ for every event
 $p(\bullet|A): = \frac{1}{|A|} = \frac{1}{|B|} O = \frac{0}{|A|} = 0 = \frac{1}{|B|} = \frac{f}{|A|} = \frac{f}{|A|} O = 0$
 $F_{[E]|A|} = P(E|A|) =$
Shortcut to obtain the revised or updated probabilities:
Initial or prior probabilities. Note that here they all have the same denominator.
Information or conditioning event $F = \{a, b, d\}$
STEP 1. Set the probability of every state which is not in F to zero:
 $STEP 2.$ For the other states write new fractions with the same numerators as before:
 $STEP 3.$ In every denominator put the sum of the numerators: $15+70+10=95$. Thus the
updated probabilities are:
 $Page 4 of 11$

p(sIF)

In the above example, where $\begin{array}{c} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{array}$ and $A = \{a, c, d, e\}$, to compute $p(\bullet | A)$

Step 1: assign zero probability to states in $\neg A$:

Step 2: keep the same numerators for the states in *A*:

Step 3: since the sum of the numerators is 8, put 8 as the denominator:

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

Initial or prior probabilities:	$ \begin{pmatrix} a & b & c & d & e & f \\ \frac{3}{20} & \frac{3}{10} & \frac{1}{20} & 0 & \frac{2}{5} & \frac{1}{10} \end{pmatrix} $	
Information:	$F = \{a, b, d, e\}$	
STEP 0. Rewrite all the probabilities with the same denominator:	$\begin{array}{c} a & b & c & e & f \\ \hline a & b & c & e & f \\ \hline a & b & c & d \\$	$e F$ $\frac{8}{2v} \frac{2}{2v}$
STEP 1. Change the probability of every state which is not in <i>F</i> to zer	o: $\begin{pmatrix} a & b & c & d & e & f \\ 3 & 6 & 0 & 2 & 8 & 0 \\ \hline & & & & & 0 \end{pmatrix} 3 + 6 + \mathcal{E} \simeq$	17
STEP 2. Write new fractions which have the same numerators as before	The: $ \begin{pmatrix} a & b & c & d & e & f \\ & 0 & & 0 \end{pmatrix} $	
STEP 3 . In every denominator put the sum of the numerators: 3+6+8=17. P(S F)	$\left(\begin{array}{ccccccc} a & b & c & d & e & f \\ \frac{3}{17} & \frac{6}{17} & 0 & 0 & \frac{8}{17} & 0 \end{array}\right)$	
for $P(A F) = \langle awy \\ event A \\ Page 6 of \\ Page 6 of$	P(ANF) P(F) Z p(SIF) ¹¹ SEA	nal