MORE THAN TWO CATEGORIES

Enrollment in a class

$$
\begin{array}{cccc}
E C N & \text { ARE } & \text { PSY } & \text { Other } \\
38 \% & 20 \% & 12 \% & 30 \%
\end{array}
$$

Percentages of those who passed:

major	$E C N$	ARE	PSY	Other
percentage who passed	70%	60%	40%	35%

You learn that Ann passed the class. How likely is it that Ann is a PSY major?

| major | $E C N$ | ARE | PSY | Other | Ann passed the class. How
 likely is it that she is a PSY
 major? |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| \rightarrow enrollment | 38% | 20% | 12% | 30% | |

Probability and conditional probability

Finite set of states $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Subsets of S are called events.
Probability distribution over S :

$$
\text { for all } i=1,2, . ., n
$$

$$
\begin{array}{llll}
s_{1} & s_{2} & \ldots & s_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}
$$

$$
\begin{aligned}
& 0 \leq p_{i} \leq 1 \\
& p_{1}+p_{2}+\cdots+p_{n}=1
\end{aligned}
$$

Denote the probability of state s by $p(s)$.
Given an event $E \subseteq S$, the probability of E is:

Denote by $\neg E$ the complement of $E \subseteq S$.

Example

$$
\begin{array}{lll}
S=\{a, b, c, d, e, f, g\} & A=\{a, c, d, e\} \quad B=\{a, e, g\} \\
\neg A=\{b, f, g\} & \neg B=\{b, c, d, f\}
\end{array}
$$

Given

$$
a \quad b \quad c \quad d \quad e \quad f \quad g
$$

$$
\begin{array}{lllllll}
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array}
$$

$$
\begin{aligned}
& P(\neg A)=p(b)+p(f)+p(g)=\frac{2}{14}+\frac{1}{14}+\frac{3}{14}=\frac{6}{14}=1-P(A) \\
& P(A)=p(a)+p(c)+p(d)+p(e) \\
& =\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}=\frac{8}{14}
\end{aligned}
$$

$\underset{\text { INION }}{\operatorname{INTERSEL} A \cap B}=\{a, e\} \quad P(A \cap B)=p(a)+p l e)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}$
UNION $A \cup B=\{a, c, d, e, g\} \quad P(A \cup B)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\frac{11}{14}$
Note: for every two events E and F :

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

if E and F are disjoint ie. $E \cap F=\varnothing$ then $P(E \cup F)=P(E)+P(F)$

We denote by $P(E \mid F)$ the probability of E conditional on F and define it as:

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
& \text { conditional on } F \text { or given } F \quad P(F) \neq 0
\end{aligned}
$$

$$
\text { Continuing the example above where } \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array} \quad A=\{a, c, d, e\} \quad B=\{a, e, g\}
$$

$$
\begin{aligned}
& \left.\left.P(A)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}=\frac{8}{14}, \quad P(B)=\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\frac{10}{14},\right) P(A \cap B)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}\right) \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{7}{14}}{\frac{10}{14}}=\frac{7}{10} \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{7}{14}}{\frac{8}{14}}=\frac{7}{8} \\
& \text { The conditional probability formula can also be applied to individual states: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { assuming } P(c) \neq 0 \quad P(C) \quad \frac{P(s)}{P(c)} \text { if } s \in C
\end{aligned}
$$

We can think of $p(\cdot \mid E)$ as a probability distribution on the entire set S. Continuing the example above where $S=\{a, b, c, d, e, f, g\}, A=\{a, c, d, e\}$ and $\begin{array}{ccccccc}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}\end{array} \quad$ (so that $\left.P(A)=\frac{8}{14}\right)$

In the above example, where $\begin{array}{lllllll}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{9}{14} & \frac{1}{14} & \frac{3}{14}\end{array}$ and $A=\{a, c, d, e\}$, to compute $p(\cdot \mid A)$
Step 1: assign zero probability to states in $\neg A$:

$$
a \text { (b) } c c c c c(f)(g)
$$

Step 2: keep the same numerators for the states in A :

Step 3: since the sum of the numerators is 8 , put 8 as the denominator:

$$
p(s \mid A) \quad \begin{array}{llllllll}
a & b & c & d & e & f & g \\
\frac{1}{8} & 0 & \frac{0}{8} & \frac{1}{8} & \frac{0}{8} & 0 & 0
\end{array} \quad 1+1+6=8
$$

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

