THE HURWICZ INDEX

	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃
$\overline{a_1}$	8	1	0
a_2	6	2	3
a_3	0	3	4

$$H_{\alpha}(a_1) = 0\alpha + 8(1-\alpha) = 8 - 8\alpha$$

$$H_{\alpha}(a_2) = 2\alpha + 6(1-\alpha) = 6 - 4\alpha$$

$$H_{\alpha}(a_3) = 0\alpha + 4(1-\alpha) = 4 - 4\alpha$$

Note: the Hurwicz index is invariant to allowed transformations of the utility function.

MinMax REGRET

	S_1	S_2	<i>S</i> ₃
$\overline{a_1}$	8	1	0
a_2	6	2	3
a_3	i 0	3	4

Define the **regret of taking action** *a* **under state** *s* as the difference between the maximum utility you could have got under state *s* (by taking the best action for that state) and the utility that you get with action *a*. We can then construct a **regret table:**

If I had chosen an alternative utility function, would I have reached the same conclusion in terms of MinMaxRegret? Consider a new decision problem:

The expected utility of surgery is

the expected utility of taking the drug is

So if you know the values of p and q then your optimal decision is:

- surgery if
- drug if
- either surgery or drug is

Suppose that the values of p and q are not available

	(S,D)	$(S, \neg D)$	$(\neg S, D)$	$(\neg S, \neg D)$
Surgery	z_1	z_1	z_2	z_2
Drug	$ z_1$	Z_3	Z_1	Z_3

The corresponding regret table is:

$$\frac{|(S,D) (S,\neg D) (\neg S,D) (\neg S,\neg D)}{Surgery} | \\
Drug |$$

What about the Hurwicz index?

$$H_{\alpha}(Drug) = H_{\alpha}(Surgery) =$$