First question to ask yourself: what is my ranking of the basic outcomes?

$$
\begin{array}{cccc}
\text { state } & \rightarrow & S_{1} & S_{2}
\end{array} S_{3}
$$

state \rightarrow	S_{1}	S_{2}	s_{3}	best	z_{8}
act \downarrow					z_{3}
a_{1}		z_{1}	z_{2}	z_{3}	
a_{2}	z_{4}	z_{5}	z_{6}		z_{1}, z_{9}
a_{3}	z_{7}	z_{8}	z_{9}		z_{2}, z_{6}
				z_{4}, z_{5}	

Note:

- a_{1}

Thus ...

Three questions to ask yourself:
Note that p is the probability of the worst outcome, not the best
(1) What p is such that $\binom{z_{3}}{1} \sim\left(\begin{array}{cc}z_{7} & z_{8} \\ p & 1-p\end{array}\right)$? Suppose the answer is
(2) What p is such that $\binom{z_{1}}{1} \sim\left(\begin{array}{cc}z_{7} & z_{8} \\ p & 1-p\end{array}\right)$? Suppose the answer is
(3) What p is such that $\binom{z_{2}}{1} \sim\left(\begin{array}{cc}z_{7} & z_{8} \\ p & 1-p\end{array}\right)$? Suppose the answer is

Utility

best	z_{8}	1
	z_{3}	$\frac{3}{4}$
	z_{1}, z_{9}	$\frac{2}{3}$
	z_{2}	$\frac{2}{5}$
worst	z_{7}	0

In order not to deal with fractions, rescale the utility function by multiplying each number by 60 :

Utility

			best	z_{8}	60
				z_{3}	45
				z_{1}, z_{9}	40
				z_{2}	24
			worst	z_{7}	0
$\begin{gathered} \text { state } \rightarrow \\ \text { act } \downarrow \\ a_{1} \end{gathered}$	s_{1}	s_{2}	s_{3}		
	40	24	45		
a_{3}		60	40		

Next step: try to assign probabilities to the states (from objective data or some subjective assessment). Suppose you assess the following:

$$
\begin{array}{cccc}
\text { state: } & S_{1} & S_{2} & S_{3} \\
\text { probability: } & \frac{1}{5} & \frac{3}{5} & \frac{1}{5}
\end{array}
$$

Then: $\mathbb{E}\left[U\left(a_{1}\right)\right]=$
$\mathbb{E}\left[U\left(a_{3}\right)\right]=$

Hence you should take action

Decision tree

First question to ask yourself: how do $\operatorname{Irank} z_{1}$ and z_{2} ? Suppose that the answer is $z_{2} \succ z_{1}$.

Second question to ask yourself: how do I rank z_{4} and z_{5} ? Suppose that the answer is $z_{4} \succ z_{5}$.

Next question: how do I rank the remaining four outcomes? Suppose:

		Utility
best	z_{2}	1
	z_{6}	
	z_{4}	
worst	z_{3}	0

This is sufficient to eliminate the random event on the left:

Two more questions and then you are done!
(4) What p is such that $\binom{z_{6}}{1} \sim\left(\begin{array}{cc}z_{2} & z_{3} \\ p & 1-p\end{array}\right)$? Suppose the answer is $p=\frac{1}{2}$.
(5) What p is such that $\binom{z_{4}}{1} \sim\left(\begin{array}{cc}z_{2} & z_{3} \\ p & 1-p\end{array}\right)$? Suppose the answer is $p=\frac{1}{10}$.

Then the lottery corresponding to the random event on the right has an expected utility of

Hence the optimal decision is to first take action a and then, if a second choice is required between c and d, choose d :

