First question to ask yourself: what is my ranking of the basic outcomes?

state \rightarrow	S_1	S_2	<i>S</i> ₃
act↓			
a_{1}	Z_1	Z_2	Z_3
a_2	Z_4	Z_5	Z_6
a_3	\mathcal{Z}_7	Z_8	Z_9

state \rightarrow act \downarrow	S ₁	<i>s</i> ₂	<i>S</i> ₃	best z_8 z_3
a_1	Z_1	Z_2	Z_3	Z_1, Z_9
a_2	Z_A	- Z5	Z ₆	<i>z</i> ₂ , <i>z</i> ₆
a_2	т Z. ₇	 Z.o	<i>Z</i> .o	z_4, z_5
3	5/	-8	~9	worst z_7

Note:

• a_1

Thus ...

state →	C	C	C	Utility
state 7	s ₁	s ₂	3 3	λ_8 1
act ↓				Z_3
a_1	Z_1	Z_2	Z_3	z_1, z_9
a_3	Z_7	Z_8	Z_{0}	Z_2
5	,	0	,	worst $z_7 = 0$

Three questions to ask yourself:

Note that p is the probability of the worst outcome, not the best

(1) What p is such that
$$\begin{pmatrix} z_3 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is

(2) What p is such that
$$\begin{pmatrix} z_1 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is

(3) What p is such that
$$\begin{pmatrix} z_2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is

$$\begin{array}{ccc} & & Utility\\ \text{best} & z_8 & 1\\ & z_3 & \frac{3}{4}\\ & z_1, z_9 & \frac{2}{3}\\ & z_2 & \frac{2}{5}\\ & \text{worst} & z_7 & 0 \end{array}$$

In order not to deal with fractions, rescale the utility function by multiplying each number by 60:

Utility

best	Z_8	60
	Z_3	45
	z_1, z_9	40
	Z_2	24
worst	\mathcal{Z}_7	0

state \rightarrow s_1 s_2 s_3 act \downarrow a_1 40 24 45 a_3 0 60 40

Next step: try to assign probabilities to the states (from objective data or some subjective assessment). Suppose you assess the following:

state:	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
probability:	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

Then: $\mathbb{E}[U(a_1)] =$

 $\mathbb{E}[U(a_3)] =$

Hence you should take action

First question to ask yourself: how do I rank z_1 and z_2 ? Suppose that the answer is $z_2 \succ z_1$.

Second question to ask yourself: how do I rank z_4 and z_5 ? Suppose that the answer is $z_4 \succ z_5$.

Next question: how do I rank the remaining four outcomes? Suppose:

		Utility
best	Z_2	1
	Z_6	
	Z_4	
worst	Z_3	0

This is sufficient to eliminate the random event on the left:

Two more questions and then you are done!

(4) What p is such that
$$\begin{pmatrix} z_6 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{2}$.

(5) What p is such that
$$\begin{pmatrix} z_4 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{10}$.

Then the lottery corresponding to the random event on the right has an expected utility of

Hence the optimal decision is to first take action a and then, if a second choice is required between c and d, choose d:

