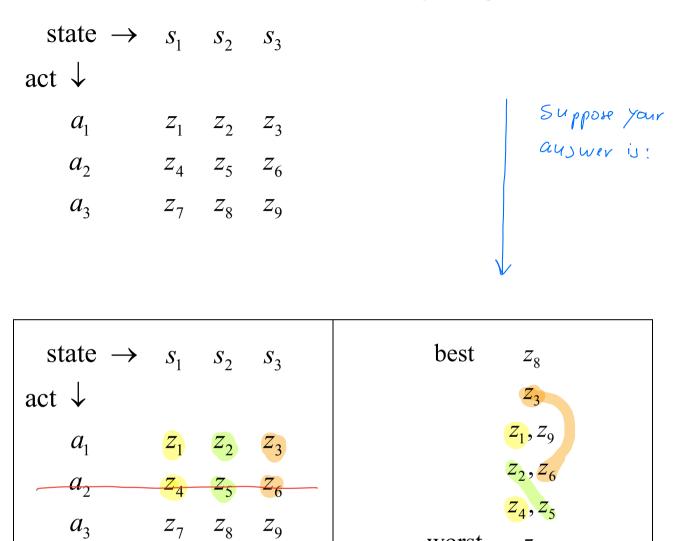
First question to ask yourself: what is my ranking of the basic outcomes?

worst

 Z_7



 $Z_1 > Z_4 \quad Z_2 > Z_5 \quad Z_3 > Z_6$

Note:

• a1 strictly dominates a2

Thus ...

				NonMALIZED Utility		
state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	best	Z_8	1
act ↓					Z_3	<u>3</u> 4
a_1	Z_1	Z_2	Z_3		Z_1, Z_9	2/3
a_3	Z_7	Z_8	Z_9		Z_2	2/15
				worst	Z_7	0

Three questions to ask yourself:

Note that p is the probability of the worst outcome, not the best

(1) What p is such that
$$\begin{pmatrix} z_3 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{4}$

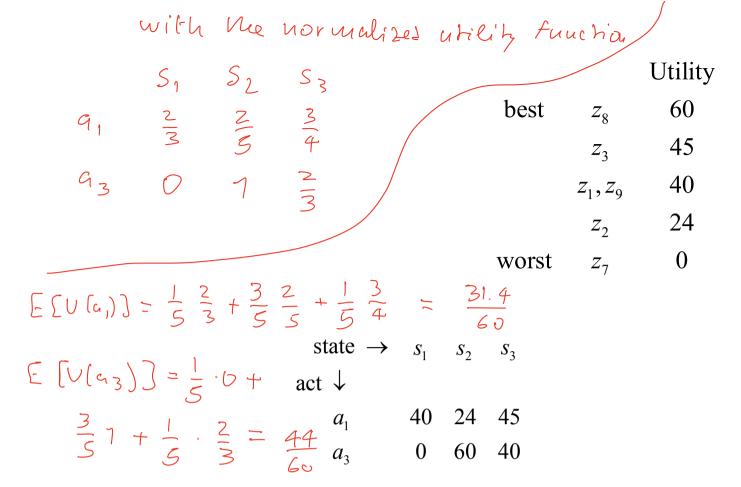
(2) What p is such that
$$\begin{pmatrix} z_1 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{3}$

(3) What p is such that
$$\begin{pmatrix} z_2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{3}{5}$

Rasier to be

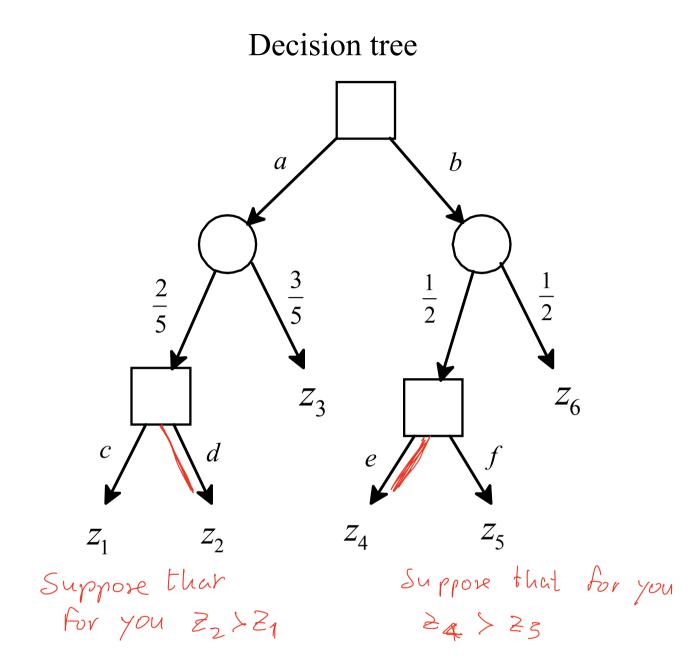
		Utility		\checkmark
best	Z_8	1		60
	Z_3	$\frac{3}{4}$	multiply	45
	Z_{1}, Z_{9}	$\frac{2}{3}$	all	40
	Z_2	$\frac{2}{5}$	60 60	24
worst	Z_7	0		D

In order not to deal with fractions, rescale the utility function by multiplying each number by 60:

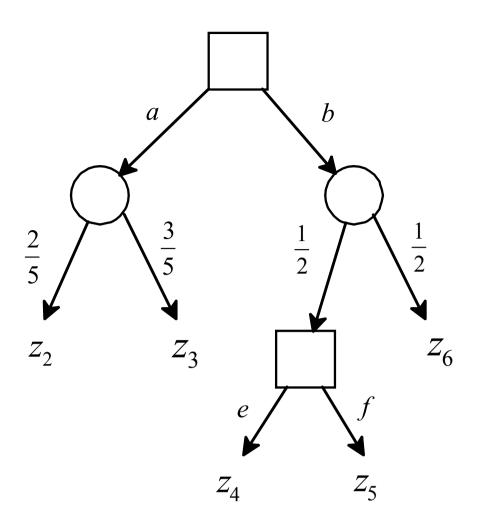


Next step: try to assign probabilities to the states (from objective data or some subjective assessment). Suppose you assess the following:

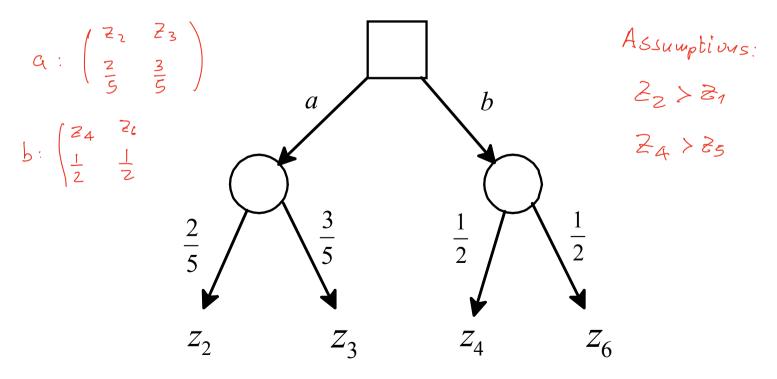
state: $s_1 \quad s_2 \quad s_3$ probability: $\frac{1}{5} \quad \frac{3}{5} \quad \frac{1}{5}$ Then: $\mathbb{E}[U(a_1)] = \quad \frac{1}{5} \quad 40 + \frac{3}{5} \quad 24 + \frac{1}{5} \quad 45 = 31.4$ $\mathbb{E}[U(a_3)] = \quad \frac{1}{5} \quad 0 + \frac{3}{5} \quad 60 + \frac{1}{5} \quad 40 = 4.4$ Hence you should take action Q_3

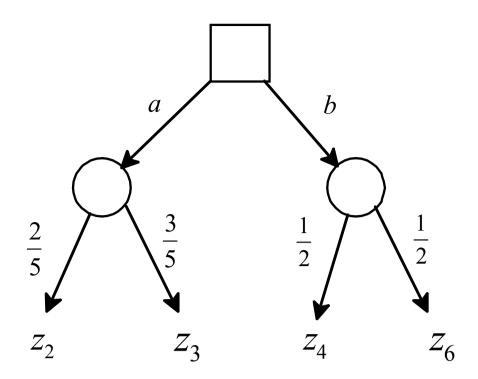


First question to ask yourself: how do I rank z_1 and z_2 ? Suppose that the answer is $z_2 \succ z_1$.



Second question to ask yourself: how do I rank z_4 and z_5 ? Suppose that the answer is $z_4 \succ z_5$.



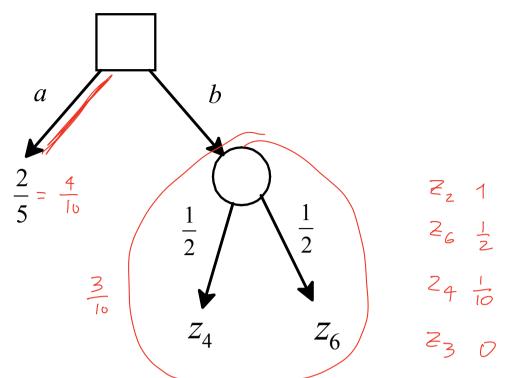


Next question: how do I rank the remaining four outcomes? Suppose:

		Utility
best	Z_2	1
	Z_6	
	Z_4	
worst	Z_3	0

This is sufficient to eliminate the random event on the left:

$$E[U(a)] = \frac{2}{5}V(2_2) + \frac{3}{5}V(2_3) \qquad Q: \begin{pmatrix} 2_2 & 2_3 \\ 2_5 & 3_5 \end{pmatrix}$$
$$= \frac{2}{5}1 + \frac{3}{5}0 = \frac{2}{5}$$



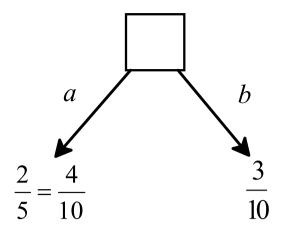
Two more questions and then you are done!

(4) What p is such that $\begin{pmatrix} z_6 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $p = \frac{1}{2}$.

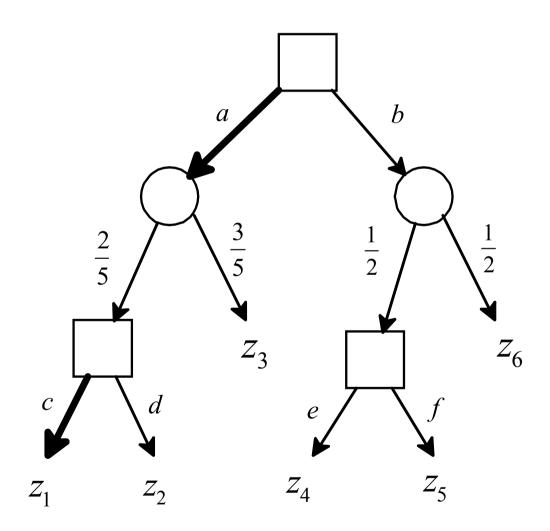
(5) What
$$p$$
 is such that $\begin{pmatrix} z_4 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $p = \frac{1}{10}$.

Then the lottery corresponding to the random event on the right has an expected utility of $(26) + (26) = (26)^{2}$

$$E[V(b)] = \frac{1}{2}U(2_{4}) + \frac{1}{2}U(2_{6}) = \frac{1}{2} = \frac{1}{2} = \frac{1}{10} + \frac{1}{2} = \frac{3}{10}$$



Hence the optimal decision is to first take action a and then, if a second choice is required between c and d, choose d:



THE HURWICZ INDEX

- α ($0 \le \alpha \le 1$) weight attached to the worst outcome: *index of pessimism*
- $(1-\alpha)$ weight attached to the best outcome: index of optimism.

$$\frac{1}{a_{1}} \begin{vmatrix} s_{1} & s_{2} & s_{3} \\ \hline a_{1} & 8 & 1 & 0 \\ a_{2} & 6 & 2 & 3 \\ a_{3} & 0 & 3 & 4 \\ \end{bmatrix}$$

$$\begin{array}{c} H_{\alpha}(a_{1}) = & 0 \cdot d + 8 \cdot (1 - d) = 8 - 8 d \\ H_{\alpha}(a_{2}) = & 2 \cdot d + 6 (1 - d) = 4 - 4 d \\ H_{\alpha}(a_{3}) = & 0 \cdot d + 4 (1 - d) = 4 - 4 d \\ \end{array}$$

$$\begin{array}{c} H_{\alpha}(a_{3}) = & 0 \cdot d + 4 (1 - d) = 4 - 4 d \\ H_{\frac{1}{8}}(a_{3}) = -4 - 4 d \\ H_{$$

Then choose the act that gives the highest value. For example, if $\alpha = \frac{3}{4}$ then

 $H_{\frac{3}{4}}(a_1) = H_{\frac{3}{4}}(a_2) = H_{\frac{3}{4}}(a_3) =$ thus choose

If $\alpha = 1$ then = MaxiMin criterion.