Example from the first class

How to process information

- In the US, 1% of women of age 40 have breast cancer.
- If a woman has breast cancer, the probability that she tests positive on a screening mammogram is $\mathbf{9 0 \%}$.
- If she does not have breast cancer, the probability that she tests negative on a screening mammogram is $\mathbf{9 0 \%}$.

That is, mammograms have a $\mathbf{9 0 \%}$ accuracy.
Susan is a 40-year old woman who tested positive on a mammogram.
What are the chances that she actually has breast cancer?

CONDITIONAL REASONING: the FREQUENCY approach

- Suppose there is a new variant of COVID
- The fraction p of the population is infected
- Typical symptoms: nasal congestion
- 80% of those infected have the symptoms
- 10% of those not infected have the symptoms

Suppose that $p=5 \%$. You wake up with nasal congestion.
How likely is it that you are infected?

- 5% of the population are infected
- 80% of those infected have the symptoms
- 10% of those not infected have the symptoms

A test is now available. The probability of testing positive is independent of whether or not you have symptoms:

- If you are infected, the probability of testing positive is 80% (whether or not you have the symptoms)
- If you are not infected, the probability of testing positive is 10% (whether or not you have the symptoms)

Since you woke up with symptoms, you decided to get tested and the result was positive. How likely is it that you are infected?

- If you are infected, the probability of testing positive is 80% (whether or not you have the symptoms)
- If you are not infected, the probability of testing positive is 10% (whether or not you have the symptoms)

One more example

Base rate of a disease: percentage of the population that has the disease

Sensitivity of a test: percentage of those who have the disease that tests positive

Specificity of a test: percentage of those who do not have the disease that tests negative

Suppose:

$$
\begin{aligned}
& \text { Base rate }=6 \% \\
& \text { Sensitivity }=88 \% \\
& \text { Specificity }=93 \%
\end{aligned}
$$

Suppose you test positive. What is the probability that you have the disease?

MORE THAN TWO CATEGORIES

Enrollment in a class

$$
\begin{array}{cccc}
E C N & \text { ARE } & \text { PSY } & \text { Other } \\
38 \% & 20 \% & 12 \% & 30 \%
\end{array}
$$

Percentages of those who passed:

major	$E C N$	$A R E$	$P S Y$	Other
percentage who passed	70%	60%	40%	35%

You learn that Ann passed the class. How likely is it that Ann is a PSY major?

major	$E C N$	ARE	PSY	Other	Ann passed the class. How likely is it that she is a PSY enrollment
percentage who passed	38%	20%	12%	30%	major?

