Theorem 2. Let \succsim be a von Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L}. Then the following are true.
(A) If $U: Z \rightarrow \mathbb{R}$ is a von Neumann-Morgenstern utility function that represents \succsim, then, for any two real numbers a and b with $a>0$, the function $V: Z \rightarrow \mathbb{R}$ defined by $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$ is also a von Neumann-Morgenstern utility function that represents \succsim.
(B) If $U: Z \rightarrow \mathbb{R}$ and $V: Z \rightarrow \mathbb{R}$ are two von Neumann-Morgenstern utility functions that represent \succsim, then there exist two real numbers a and b with $a>0$ such that $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$.
$U=\left\{\begin{array}{llllll}z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\ 10 & 6 & 16 & 8 & 6 & 14\end{array}\right.$
operation $O=\left(\begin{array}{cc}\text { cured } & \begin{array}{c}\text { permanent } \\ \text { disability }\end{array} \\ 90 \% & 10 \%\end{array}\right)$
drug treatment $D=\left(\begin{array}{ccc}\text { cured } & \begin{array}{c}\text { no } \\ \text { benefit }\end{array} & \begin{array}{c}\text { adverse } \\ \text { reaction }\end{array} \\ 75 \% & 10 \% & 15 \%\end{array}\right)$

What should you do?

operation $O=\left(\begin{array}{cc}\text { cured } & \begin{array}{c}\text { permanent } \\ \text { disability }\end{array} \\ 90 \% & 10 \%\end{array}\right)$
drug treatment $D=\left(\begin{array}{ccc}\text { cured } & \begin{array}{c}\text { no } \\ \text { benefit }\end{array} & \begin{array}{c}\text { adverse } \\ \text { reaction }\end{array} \\ 75 \% & 10 \% & 15 \%\end{array}\right)$

The Allais paradox

(Maurice Allais, 1952)

$$
\begin{gathered}
A=\binom{\$ 1 M}{100 \%} \text { versus } \quad B=\left(\begin{array}{ccc}
\$ 2.5 M & \$ 1 M & 0 \\
10 \% & 89 \% & 1 \%
\end{array}\right) \\
C=\left(\begin{array}{cc}
\$ 1 M & 0 \\
11 \% & 89 \%
\end{array}\right) \text { versus } \quad D=\left(\begin{array}{cc}
\$ 2.5 M & 0 \\
10 \% & 90 \%
\end{array}\right) .
\end{gathered}
$$

$A \succ B \quad$ if and only if $\quad \mathbb{E}[U(A)]>\mathbb{E}[U(B)]$

