
drug treatment $D=\left(\begin{array}{ccc}\text { cured } & \begin{array}{c}\text { no } \\ \text { benefit }\end{array} & \begin{array}{c}\text { adverse } \\ \text { reaction }\end{array} \\ 75 \% & 10 \% & 15 \%\end{array}\right)$

What is the expected value of lottery 0 ?
What is the expected value of lottery $D$ ?
Which of the two lotteries is better?

## EXPECTED UTILITY THEORY

$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ set of basic outcomes.
A lottery is a probability distribution over $Z: \quad L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$
Let $L$ be the set of lotteries. Suppose that the agent has a ranking $\succsim$ of the elements of $L$ :
if $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots . & z_{m} \\ q_{1} & q_{2} & \ldots . & q_{m}\end{array}\right)$ then
$L \succ M$ means that
$L \sim M$ means that

Rationality constraints on $\succsim$ (von Neumann-Morgenstern axioms):

Theorem 1 Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ be a set of basic outcomes and $L$ the set of lotteries over $Z$. If $\succsim$ satisfies the von Neumann-Morgenstern axionm then there exists a function $U: Z \rightarrow \mathbb{R}$, called a von Neumann-Morgenstern utility function, that assigns a number to every basic outcome and is such that, for any two lotteries $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ q_{1} & q_{2} & \ldots & q_{m}\end{array}\right)$,
$L \succ M \quad$ if and only if $\quad \underbrace{\left.p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{m}\right)+\ldots+z_{m}\right)}_{\text {expected utifity of lotery } L}>\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots\left(z_{m}\right)}_{\text {expected utifity of fotery } M}$ and
$L \sim M \quad$ if and only if $\underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected uitily of ofotery } L}=\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utilify of lotery } M}$

EXAMPLE 1. $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \quad L=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8}\end{array}\right) \quad M=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6}\end{array}\right)$
Suppose we know that $U=\left\{\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ 6 & 2 & 8 & 1\end{array}\right.$
Then
$\mathbb{E}[U(L)]=$
$\mathbb{E}[U(M)]=$

## EXAMPLE 2.

$$
A=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
50 \% & 50 \%
\end{array}\right) \quad B=\binom{\text { paid 1-week vacation }}{100 \%}
$$

Suppose Ann says $\quad B \succ A \quad$ How would she rank

$$
C=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
5 \% & 95 \%
\end{array}\right) \text { and } \quad D=\left(\begin{array}{cc}
\text { paid 1-week vacation } & \text { no vacation } \\
10 \% & 90 \%
\end{array}\right) ?
$$

## Money lotteries

$$
L=\binom{\$ 17}{1} \quad M=\left(\begin{array}{cc}
\$ 9 & \$ 25 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$\mathbb{E}[L]=\quad \mathbb{E}[M]=$

Suppose Bob's vNM utility function is: $U(\$ x)=\sqrt{x}$
$\mathbb{E}[U(L)]=$
$\mathbb{E}[U(M)]=$

$$
A=\left(\begin{array}{cc}
\$ 0 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\left(\begin{array}{cc}
\$ 40 & \$ 60 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$\mathbb{E}[A]=$

$$
\mathbb{E}[B]=
$$

Suppose Bob's vNM utility function is: $U(\$ x)=\sqrt{x}$
$\mathbb{E}[U(A)]=$
$\mathbb{E}[U(B)]=$

$$
A=\left(\begin{array}{cc}
\$ 4 & \$ 6 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\binom{\$ 5}{1}
$$

$\mathbf{U}(\$ x)=x^{2}$

Re-define attitudes to risk in terms of utility:

Risk-averse if

Risk-neutral if

Risk-loving if

