operation $O=\left(\begin{array}{cc}\text { cured } & \begin{array}{c}\text { permanent } \\ \text { disability } \\ 90 \%\end{array} \\ 10 \%\end{array}\right)$
drug treatment $D=\left(\begin{array}{ccc}\text { cured } & \begin{array}{c}\text { no } \\ \text { benefit }\end{array} & \begin{array}{c}\text { adverse } \\ \text { reaction }\end{array} \\ 75 \% & 10 \% & 15 \%\end{array}\right)$
$\left.\begin{array}{l}\text { Which of the two would a risk-averse person choore? } \\ \text { What is the expected value of lottery } \mathbf{O} \text { ? } \\ \text { What is the expected value of lottery } \mathbf{D} ?\end{array}\right\}$

Which of the two lotteries is better?

$$
\left(\begin{array}{ll}
z_{1} & z_{5} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right)=\left(\begin{array}{ccccc}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} \\
\frac{1}{3} & 0 & 0 & 0 & \frac{x}{3}
\end{array}\right) \quad z_{2}\left(\begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{m} \\
0 & 1 & 0 & 0
\end{array}\right)
$$

$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \quad$ set of basic outcomes.

$$
0 \leq P_{i} \leq 1 \quad i \in\{1,2 ;, n\}
$$

A lottery is a probability distribution over $Z: \quad L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right) \quad P_{1}+p_{2}+\ldots+p_{m}=1$
Let L be the set of lotteries. Suppose that the agent has a ranking \succsim of the elements of L :
if $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{cccc}z_{1} & z_{2} & \ldots & z_{m} \\ q_{1} & q_{2} & \ldots & q_{m}\end{array}\right)$ then
$L \succ M$ means that L is considered to be better than M
$\underset{q}{\sim} M$ means that $L \quad l_{1}$ just as good as M

Rationality constraints on \succsim (von Neumann-Morgenstern axioms):

1. Able to ran baxic on'wime (complete and rrauritive)
2.

$$
\begin{aligned}
& Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\} \\
& \text { best } \begin{array}{c}
z_{3} \\
z_{1}, z_{4} \\
z_{2} \\
z_{5}
\end{array}>z_{\text {best }} \\
& \text { worst } \\
& L=\left(\begin{array}{cc}
z_{3} & z_{3} \\
p & 1-p
\end{array}\right) \text { compare } t_{0} M=\left(\begin{array}{ll}
z_{3} & z_{5} \\
g & 1-q
\end{array}\right)
\end{aligned}
$$

Axiom 2: L better than M if and only if $p>g$

Theorem 1 Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ be a set of basic outcomes and L the set of lotteries over Z. If \succsim satisfies the von Neumann-Morgenstern axionm then there exists a function $U: Z \rightarrow \mathbb{R}$, called a von Neumann-Morgenstern utility function, that assigns a number to every basic outcome and is such that, for any two lotteries $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ q_{1} & q_{2} & \ldots & q_{m}\end{array}\right)$,
$L \succ M \quad$ if and only if $\quad \underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utififyof lotery } L}>\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected difily of lotery } M}$
and
$L \sim M \quad$ if and only if $\underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utility of lotery } L}=\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+z_{m} U(}_{\text {expected difily of of otery } M}$

EXAMPLE 1. $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \quad L=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8}\end{array}\right) \quad M=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6}\end{array}\right)$
Suppose we know that $U=\left\{\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ 6 & 2 & 8 & 1\end{array}\right.$
Then

$$
\begin{array}{r}
\text { best } \\
z_{3} \\
z_{1} \\
z_{2}
\end{array}
$$

$$
\begin{aligned}
& \mathbb{E}[U(L)]=\frac{1}{8} \cdot 6+\frac{5}{8} 2+0.8+\frac{2}{8} 1=2.25 \\
& \mathbb{E}[U(M)]=\frac{1}{6} 6+\frac{2}{6} 2+\frac{1}{6} \cdot 8+\frac{2}{6} 1=3.33
\end{aligned}
$$

EXAMPLE 2.

$$
A=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
50 \% & 50 \%
\end{array}\right) \quad B=\binom{\text { paid 1-week vacation }}{100 \%}
$$

Suppose Ann says $B \succ A$ How would she rank

$$
\begin{aligned}
& C=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
5 \% & 95 \%
\end{array}\right) \text { and } D=\left(\begin{array}{cc}
\text { paid 1-week vacation } & \text { no vacation } \\
10 \% & 90 \%
\end{array}\right) ? \\
& \text { How } C>D
\end{aligned}
$$

$$
\begin{aligned}
& \text { How } C>D \\
& \begin{array}{cccc}
& \text { now } \quad C \rightarrow D & \\
\text { best } & \\
& \text { 3-ween vacation } & z_{1} & a \\
\text { 1-weer vacation } & z_{2} & b \\
\text { worst no vacation } & z_{3} & c
\end{array} \\
& B>A \text { then } E[U(B)]>E[U(A)] \\
& \text { 1. } U\left(z_{2}\right)=U\left(z_{2}\right) \\
& =b \\
& \Rightarrow \frac{1}{2} U\left(z_{7}\right)+\frac{1}{2} U\left(z_{3}\right) \\
& =\frac{1}{2} a+\frac{1}{2} c \\
& \text { Page } 4 \text { of } 6 \\
& b>\frac{a+c}{2} \text { or } \quad 2 b>a+c
\end{aligned}
$$

$$
\begin{aligned}
& C=\left(\begin{array}{cc}
\text { paid } 3 \text {-week vacation } & \text { no vacation } \\
5 \% & 95 \%
\end{array}\right) \text { and } D=\left(\begin{array}{cc}
\text { paid } 1 \text {-week vacation } & \text { no vacation } \\
10 \% & 90 \%
\end{array}\right) \text { ? } \\
& C>D \text { then } E[U(C)]>E[U(D)] \\
& \frac{5}{100} U\left(z_{1}\right)+\frac{95}{100} U\left(z_{3}\right) \\
& \frac{10}{100} U\left(z_{2}\right)+\frac{90}{100} U\left(z_{3}\right) \\
& =\frac{5}{100} a+\frac{95}{100} c>=\frac{10}{100} b+\left(\frac{90}{100} c\right. \\
& \frac{5}{100} a+\frac{5}{100} c>\frac{10}{100} b \quad \text { multiply by } 100 \\
& 5 a+5 c>10 b \\
& \text { divide by } 5 \\
& a+c>2 b \text { courradiction! }
\end{aligned}
$$

Money lotteries

$$
\begin{array}{ll}
L=\binom{\$ 17}{1} & M=\left(\begin{array}{cc}
\$ 9 & \$ 25 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
\mathbb{E}[L]=17 & E[M]=\frac{1}{2} 9+\frac{1}{2} 25=17 \\
\mathbb{E}[M]=17 & U(\$ 25)=\sqrt{25}=5 \\
\text { Suppose Bob's vNM utility function is: } U(\$ x)=\sqrt{x} & U(\$ 17)=\sqrt{17}=4.12 \\
\mathbb{E}[U(L)]=1 \cdot \sqrt{17}=4.12> & \mathbb{E}[U(M)]=\frac{1}{2} \sqrt{9}+\frac{1}{2} \sqrt{25}= \\
\text { RISK AVERSE } \quad \frac{1}{2} 3+\frac{1}{2} 5=4
\end{array}
$$

$$
\begin{array}{ll}
E[A]=50 & E[B]=\frac{1}{2} 40+\frac{1}{2} 60=50 \\
A=\left(\begin{array}{cc}
\$ 0 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) & B=\left(\begin{array}{cc}
\$ 40 & \$ 60 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
\mathbb{E}[A]=50 & \mathbb{E}[B]=50
\end{array}
$$

Suppose Bob's vNM utility function is: $U(\$ x)=\sqrt{x}$

$$
\begin{aligned}
& \mathbb{E}[U(A)]=\frac{1}{2} \sqrt{0}+\frac{1}{2} \sqrt{100}=\frac{1}{2} 0+\frac{1}{2} 10=5 \\
& \mathbb{E}[U(B)]=\frac{1}{2} \sqrt{40}+\frac{1}{2} \sqrt{60}=7.03
\end{aligned}
$$

$B>A$

$$
\begin{aligned}
& E[A]=\frac{1}{2} 4+\frac{1}{2} 6 \\
&=5 \quad A=\left(\begin{array}{cc}
\$ 4 & \$ 6 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\binom{\$ 5}{1} \\
& \mathbf{U}(\mathbf{\$ x})=\mathbf{x}^{2} \\
& E[U(A)]=\frac{1}{2} 16+\frac{1}{2} 36=\frac{52}{2} \\
& E[U(B)]=1.25=25
\end{aligned}
$$

$$
\$ 6 \quad 36
$$

$$
\$ 5 \quad 25
$$

$$
\$ 4 \quad 16
$$

$A>B$
Risk Loving

$$
L=\left(\begin{array}{ccc}
\$ x_{1} & \cdots & \$ x_{w} \\
p_{1} & & p_{m}
\end{array}\right)
$$

Redefine attitudes to risk in terms of utility: expected value of L

Risk-averse if

$$
U(\overbrace{E[L]})>\underbrace{E[U(L)]}_{\text {expected utility of } L}
$$

Risk-neutral if

$$
U(E[L])=E[U(L)]
$$

Risk-loving if

$$
U(E[L])<E[U(L)]
$$

