state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Dominance:
act ↓				
a_1	4	3	1	
a2	6	2	2	
a_3	5	3	2	
a_4	6	1	0	
<i>a</i> ₅	3	2	5	

So we can simplify

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

What then?

First a different example:

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a_1 \quad 4 \quad 3 \quad 1$ $a_2 \quad 3 \quad 2 \quad 2$ $a_3 \quad 5 \quad 3 \quad 2$ $a_4 \quad 6 \quad 1 \quad 0$ $a_5 \quad 3 \quad 3 \quad 4$

One criterion that can be used is the **MaxiMin** criterion.

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

Now back to the previous problem:

MaxiMin =

A refinement is the **LexiMin**

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a \quad 6 \quad 2 \quad 2$

Here the LexiMin picks

One more example:

state \rightarrow	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	
act ↓					MaxiMin =
a_1	2	3	1	5	
a_2	6	2	2	3	
<i>a</i> ₃	5	3	2	4	Lexiiviin =
a_4	6	1	0	7	
a_5	3	2	5	1	

Special case: outcomes are sums of money

state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$ act \downarrow $a_1 \quad \$12 \quad \$30 \quad \$0 \quad \18 $a_2 \quad \$36 \quad \$6 \quad \$24 \quad \12

 a_3 \$6 \$42 \$12 \$0

Suppose that we are able to assign probabilities to the states:

state \rightarrow	<i>S</i> ₁	S_2	<i>S</i> ₃	S_4
	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{5}{12}$	$\frac{1}{12}$

- a_1 is the lottery
- a_2 is the lottery
- a_3 is the lottery

The expected values are:

Definition of attitude to risk

Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

between
$$\binom{\mathbb{E}[L]}{1}$$
 and L or, written more simply, between $\mathbb{E}[L]$ and L

If she says that

- $\mathbb{E}[L] \succ L$ we say that she is **risk** relative to L
- $\mathbb{E}[L] \sim L$ we say that she is **risk** relative to L
- $L \succ \mathbb{E}[L]$ we say that she is **risk** relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since

 $\mathbb{E}[a_1] = 10.5$ $\mathbb{E}[a_2] = 24$ $\mathbb{E}[a_3] = 14$ Can we infer risk attitudes from choices?

Let $L = \begin{pmatrix} \$40 & \$60 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ Then $\mathbb{E}[L] =$

Suppose Ann's preferences are transitive, she prefers more money to less and she says that she prefers \$49 to *L*.

Suppose Bob's preferences are transitive, he prefers more money to less and he says that he prefers 51 to *L*.