

So we can simplify

$$
\begin{array}{cccc}
\begin{array}{clll}
\text { state }
\end{array} & s_{1} & s_{2} & s_{3} \\
\text { act } \downarrow & & & \\
a_{2} & 6 & 2 & 2 \\
a_{3} & 5 & 3 & 2 \\
a_{5} & 3 & 2 & 5
\end{array}
$$

What then?

$$
\begin{aligned}
\text { Maxi Min } & =\left\{a_{2}, a_{3}, a_{5}\right\} \\
\text { one-stuy Lexi Min } & =\left\{a_{3}, a_{5}\right\} \\
\text { two-step " } & =\left\{a_{3}, a_{5}\right\}
\end{aligned}
$$

First a different example:

$$
\text { state } \rightarrow \quad S_{1} \quad S_{2} \quad S_{3}
$$

$\left.\begin{array}{llll}a_{3} & (5) & 3 & 2 \\ a_{4} & 6 & 1 & 0 \\ a_{5} & & 3 & 3\end{array}\right)$
One criterion that can be used is the MaxiMin criterion.

$$
\begin{array}{llll}
& S_{1} & S_{2} & S_{3} \\
a_{3} & 5 & 3 & 2 \\
a_{4} & 6 & 1 & 0 \\
a_{5} & 3 & 3 & 4
\end{array}
$$

$\underline{\text { MaxiMin }}=\quad a_{5}$

$$
\begin{array}{lll}
& S_{1} & S_{2} \\
a_{1} & \$ 100 & \$ 0 \\
a_{2} & \$ 1 & \$ 1
\end{array} \quad \operatorname{MaxiMin}=\left\{a_{2}\right\}
$$

A refinement is the LexiMin

Here the LexiMin picks

$$
\begin{aligned}
& \text { Max, Min }=\left\{a_{2}, a_{3}, a_{5}\right\} \\
& \text { oue-step leximin }=\left\{a_{3}, a_{5}\right\} \\
& \text { rworstep },
\end{aligned}
$$

One more example:

state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}	
act \downarrow					
a_{1}	2	3	1	5	
a_{2}	6	2	2	3	
a_{3}	5	3	2	4	
a_{4}	6	1	0	7	
a_{5}	3	2	5	1	MaxiMin $=$

Special case: outcomes are sums of money

state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{5}{12}$	$\frac{1}{12}$
a_{1}	$\$ 12$	$\$ 30$	$\$ 0$	$\$ 18$
$\rightarrow a_{2}$	$\$ 36$	$\$ 6$	$\$ 24$	$\$ 12$
a_{3}	$\$ 6$	$\$ 42$	$\$ 12$	$\$ 0$

Suppose that we are able to assign probabilities to the states:

$$
\text { state } \rightarrow \quad S_{1} \quad S_{2} \quad S_{3} \quad S_{4}
$$

$\begin{array}{lllll}\frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12}\end{array}$
a_{1} is the lottery $\left(\begin{array}{cccc}\$ 12 & \$ 30 & \$ 0 & \$ 18 \\ \frac{1}{3} & \frac{1}{6} & \frac{5}{\sqrt{2}} & \frac{1}{12}\end{array}\right) \quad E\left[a_{1}\right]=\frac{1}{3} 12+\frac{1}{6} 30+\frac{5}{10} 0+\frac{1}{12} 18$ a_{2} is the lottery $=10.5$
a_{3} is the lottery
The expected values are:

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{cccc}
\$ 36 & \$ 6 & \$ 24 & \$ 12 \\
\frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12}
\end{array}\right) E\left[a_{2}\right]=24 \\
& \left(\begin{array}{cccc}
\$ 6 & \$ 42 & \$ 12 & \$ 0 \\
\frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12}
\end{array}\right) \quad E\left[a_{3}\right]=14
\end{aligned}
$$

Money lottery $L=\left(\begin{array}{cccc}\$ x_{1} & \$ x_{2} & \cdots & \$ x_{n} \\ p_{1} & p_{2} & \cdots & p_{n}\end{array}\right)$
The expected value of L,

$$
E[L]=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}
$$

if choice is between

$$
L=\left(\begin{array}{cc}
\$ 0 & \$ 120 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

"\$60 for rurs" or L

$$
\begin{align*}
& E[L]=\frac{1}{2} 0+\frac{1}{2} 120= \\
& \binom{\$ 60}{1} \tag{60}
\end{align*}
$$

if you prefer $\$ 60$ for sure 1 call you risk averse is loving
" indifferent

Definition of attitude to risk

Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

$$
\text { between }\binom{\mathbb{E}[L]}{1} \text { and } L \text { or, written more simply, between } \mathbb{E}[L] \text { and } L
$$

If she says that prefercuce

- $\mathbb{E}[L] \succ L$ we say that she is risk Ceverse relative to L
- $\mathbb{E}[L] \sim L$ we say that she is risk neutral relative to L
- $L \succ \mathbb{E}[L]$ we say that she is risk loving relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since
$\mathbb{E}\left[a_{1}\right]=10.5$
$\mathbb{E}\left[a_{2}\right]=24$
$\mathbb{E}\left[a_{3}\right]=14$

Can we infer risk attitudes from choices?
Let $L=\left(\begin{array}{cc}\$ 40 & \$ 60 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \quad$ Then $\mathbb{E}[L]=\frac{1}{2} \cdot 40+\frac{1}{2} 60=50$
Suppose Ann's preferences are transitive, she prefers more money to less and she says that she prefers $\$ 49$ to L.
She is indifferent between $\$ 49$ and L

$$
\$ 50>\$ 49>L
$$

by transitivity $\$ 50>L \quad$ Ann is risk averse
Suppose Bob's preferences are transitive, he prefers more money to less and he says that he prefers $\$ 51$ to L.

Could Bob be risk neutral?

$$
51>50 \sim L \quad \Rightarrow 51>L
$$

Could ho be risk averse?

$$
51>50>L \Rightarrow 51>L \quad Y e s
$$

Could he be risk loving?

