DECISION TREES

Decision to buy a house

- NEW (built 2015), costs \$350,000
- OLD (built 1980), costs $\$ 300,000$

You worry about the total cost over the next 5 years.

- New houses have a 25% probability of requiring a repair within 5 years and, on average, the repair would cost $\$ 20,000$.
- Old houses have a 60% probability of requiring a repair within 5 years and, on average, the repair would cost $\$ 100,000$.

Your options are: (1) buy house \mathbf{N}, (2) buy house \mathbf{O} or (3) pay $\$ 1,000$ to an inspector to inspect both houses. The inspector will be able to tell you if each house is good or bad.

- A good new house has probability 20% of requiring a repair (that costs $\$ 20,000$) and probability 80% of requiring no repair.
- A bad new house has probability 30% of requiring a repair (that costs $\$ 20,000$) and probability 70% of requiring no repair.
- A good old house has probability 50% of requiring a repair (that costs $\$ 100,000$) and probability 50% of requiring no repair.
- A bad old house has probability 70% of requiring a repair (that costs $\$ 100,000$) and probability 30% of requiring no repair.

Based on past data, the probabilities that the inspector will come up with the various verdicts are:

- Both good: 20\%
- Both bad: 30\%
- Old house good, new house bad: 20%
- Old house bad, new house good: 30%.

THIS IS A LOT OF INFORMATION!

- NEW costs $\$ 350,000$. New houses have a 25% probability of requiring a repair within 5 years and, on average, the repair would cost \$20,000.
- OLD costs $\$ 300,000$. Old houses have a 60% probability of requiring a repair within 5 years and, on average, the repair would cost $\$ 100,000$.
- You can also hire an inspector and pay her $\$ 1,000$

Assuming risk neutrality

The "hire inspector" module is as follows:

The expected values of the lotteries are:

- For (1):
- For (2):
- For (3):
- For (4):

Thus we can reduce this part of the tree to:

OBJECTIVE: pay the LOWEST 5-year cost

Thus we can reduce the option of hiring the inspector to the following lottery:

Whose expected value is

The optimal decision is:

1. hire the inspector and then
2. (a) if both good, buy
(b) if $\mathbf{N} \operatorname{good}$ and \mathbf{O} bad, buy
(c) if \mathbf{N} bad and \mathbf{O} good, buy
(d) if both bad, buy
