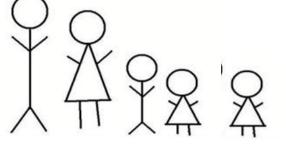
DECISIONS UNDER CERTAINTY

action	outcome			
a,	Z_1			
a ₂	22	action	oyton	mes
e e		\mathcal{A}_{l}	21	7
Gи	Zn	-p az	22	10
		a 3	ZZ	3
		$\rightarrow a_4$	24	10
		1		

Action a is rational if it gives a best outcome " " " " " " " " Me highest utility

utility maximization

A binary relation R on a set Z is a set of ordered pairs (x,y) with both x and y elements of Z.



R is the "taller than" relation: (x,y) means that x is taller than y

Alex Beth Carl Dana ELAINE

$$R = \left\{ (A,B), (A,C), (A,D), (B,C), (B,D), (C,D), (A,E), (B,E), (C,E) \right\}$$

if $(X,Y) \in R$ and $(Y,Z) \in R$ then $(X,Z) \in R$ transitivity
not complete because both (D,E) and (E,D) are missing.
$$S = (X,Y) \text{ as } "X \text{ is at least as tall as } Y"$$

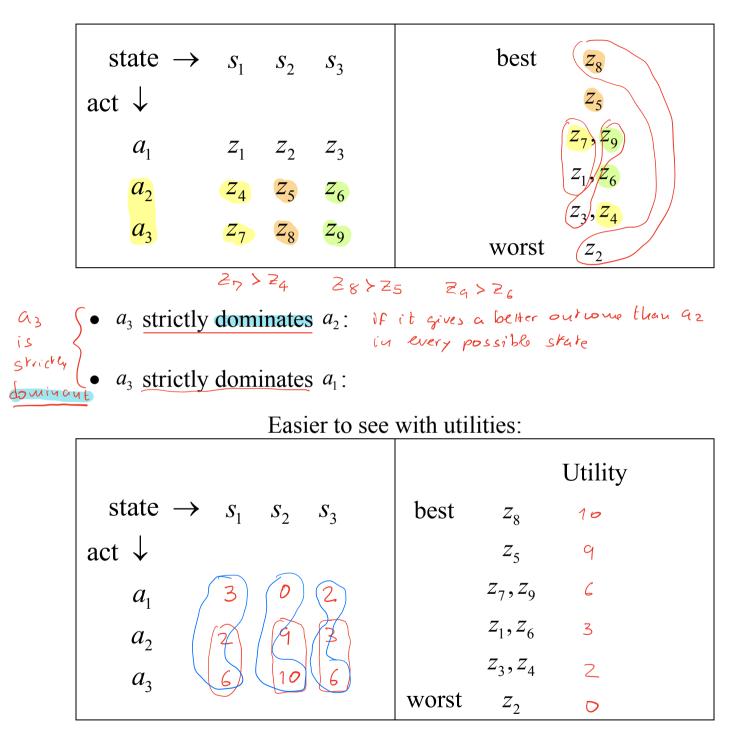
 $(D,E) \in S$ also $(E,D) \in S$
X is just as tall as y if (X,Y) and (Y,X) both below to S

$$\begin{array}{c} (x,y) \in W \quad \text{outcome } x \text{ is at least as good as } y \\ \hline H, S, F, P \quad \begin{cases} (F, H), (F, S), (F, P), (P, H), (H, P) \\ + abraco of \\ & \text{individual is} \\ & \text{individual is}$$

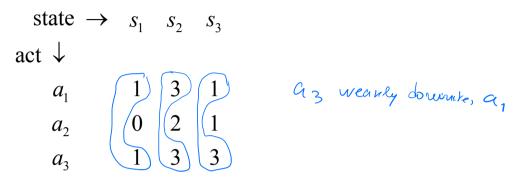
Example from the first class:

state \rightarrow	s_1 : genetically	s_2 :no genetic
act ↓	predisposed	predisposition
smoke	get cancer	no cancer
SINORE		
	enjoy smoking	enjoy smoking
not smoke	enjoy smoking no cancer	enjoy smoking no cancer

Act *a strictly dominates* act *b* if, for every state *s*, $a(s) \succ b(s)$.



Act *a* is *strictly dominant* if it strictly dominates every other act. In this example a_3 is a strictly dominant act. Act *a* weakly dominates act *b* if, for every state *s*, $a(s) \succeq b(s)$ and, furthermore, there is at least one state \hat{s} such that $a(\hat{s}) \succ b(\hat{s})$. Using utility, $U(a(s)) \ge U(b(s))$ for every state *s* and there is at least one state \hat{s} such that $U(a(\hat{s})) > U(b(\hat{s}))$.



- a_1 weakly dominates a_2
- a_3 weakly dominates a_1
- a_3 strictly (and thus also weakly) dominates a_2 .

a and *b* are *equivalent*, if, for every state *s*, $a(s) \sim b(s)$ or, in terms of utility, U(a(s)) = U(b(s)).

Act *a* is *weakly dominant* if, for every other act *b*, either *a* weakly dominates *b* or *a* and *b* are equivalent.

In the above example, ...

Another example:

state $\rightarrow s_1 \ s_2 \ s_3 \ s_4$ act \downarrow $a_1 \ 1 \ 3 \ 3 \ 2$ $a_2 \ 0 \ 2 \ 1 \ 2$ $a_3 \ 1 \ 3 \ 3 \ 2$