Act *a* weakly dominates act *b* if, for every state *s*, $a(s) \succeq b(s)$ and, furthermore, there is at least one state \hat{s} such that $a(\hat{s}) \succ b(\hat{s})$. Using utility, $U(a(s)) \ge U(b(s))$ for every state *s* and there is at least one state \hat{s} such that $U(a(\hat{s})) > U(b(\hat{s}))$.

state \rightarrow	S_1	S_2	<i>S</i> ₃
act \downarrow			
a_1	1	3	1
a_2	0	2	1
a_3	1	3	3

- a_1 weakly dominates a_2
- a_3 weakly dominates a_1
- a_3 strictly (and thus also weakly) dominates a_2 .

a and *b* are *equivalent*, if, for every state *s*, $a(s) \sim b(s)$ or, in terms of utility, U(a(s)) = U(b(s)).

Act *a* is *weakly dominant* if, for every other act *b*, either *a* weakly dominates *b* or *a* and *b* are equivalent.

In the above example, ...

Another example:

state $\rightarrow s_1 \ s_2 \ s_3 \ s_4$ act \downarrow $a_1 \ 1 \ 3 \ 3 \ 2$ $a_2 \ 0 \ 2 \ 1 \ 2$ $a_3 \ 1 \ 3 \ 3 \ 2$ You are bidding against a computer for an item that you value at \$30. The allowed bids are \$10, \$20, \$30, \$40 and \$50. The computer will pick one of these bids randomly. Let *x* be the bid generated by the computer. If your bid is greater than or equal to *x* then you win the object and you pay not your bid but the computer's bid. If your bid is less than *x* then you get nothing and pay nothing.

computer's bid \rightarrow	\$10	\$20	\$30	\$40	\$50
your bid \downarrow					
\$10					
\$20					
\$30					
\$40					
\$50					

Now same as above, but if you win the object and pay your own bid.

computer's bid \rightarrow	\$10	\$20	\$30	\$40	\$50
your bid \downarrow					
\$10					
\$20					
\$30					
\$40					
\$50					

state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Utility
act ↓				best z_4, z_{10}
a_1	Z_1	Z_2	Z_3	z_7, z_{15}
a_2	z_4	Z_5	Z_6	
a_3	Z_7	Z_8	Z_9	λ_2, λ_8
a_4	Z_{10}	Z_{11}	Z_{12}	z_{3}, z_{11}
a_5	Z_{13}	Z_{14}	Z_{15}	worst z_{12}

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow a_1 a_2 a_3 a_4 a_5

state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Dominance:
act ↓				
a_1	4	3	1	
<i>a</i> ₂	6	2	2	
a_3	5	3	2	
a_4	6	1	0	
a_5	3	2	5	

So we can simplify

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

What then?

First a different example:

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a_1 \quad 4 \quad 3 \quad 1$ $a_2 \quad 3 \quad 2 \quad 2$ $a_3 \quad 5 \quad 3 \quad 2$ $a_4 \quad 6 \quad 1 \quad 0$ $a_5 \quad 3 \quad 3 \quad 4$

One criterion that can be used is the **MaxiMin** criterion.

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

Now back to the previous problem:

MaxiMin =

A refinement is the **LexiMin**

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a \quad 6 \quad 2 \quad 2$

Here the LexiMin picks

One more example:

state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄			
act ↓					Maxil	Min =	
a_1	2	3	1	5			
a_2	6	2	2	3	Lavin	1	
<i>a</i> ₃	5	3	2	4	Lexin	nn =	
a_4	6	1	0	7			
<i>a</i> ₅	3	2	5	1			

Special case: outcomes are sums of money

state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$ act \downarrow $a_1 \quad \$12 \quad \$30 \quad \$0 \quad \18 $a_2 \quad \$36 \quad \$6 \quad \$24 \quad \12 $a_3 \quad \$6 \quad \$42 \quad \$12 \quad \0

Suppose that we are able to assign probabilities to the states:

state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	S_4
	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{5}{12}$	$\frac{1}{12}$

- a_1 is the lottery
- a_2 is the lottery
- a_3 is the lottery

The expected values are:

Definition of attitude to risk

Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

between
$$\binom{\mathbb{E}[L]}{1}$$
 and L or, written more simply, between $\mathbb{E}[L]$ and L

If she says that

- $\mathbb{E}[L] \succ L$ we say that she is **risk** relative to L
- $\mathbb{E}[L] \sim L$ we say that she is **risk** relative to L
- $L \succ \mathbb{E}[L]$ we say that she is **risk** relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since

 $\mathbb{E}[a_1] = 10.5$ $\mathbb{E}[a_2] = 24$ $\mathbb{E}[a_3] = 14$ Can we infer risk attitudes from choices?

Let $L = \begin{pmatrix} \$40 & \$60 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ Then $\mathbb{E}[L] =$

Suppose Ann's preferences are transitive, she prefers more money to less and she says that she prefers \$49 to *L*.

Suppose Bob's preferences are transitive, he prefers more money to less and he says that he prefers 51 to *L*.