Act a weakly dominates act b if, for every state $s, a(s) \succsim b(s)$ and, furthermore, there is at least one state \hat{s} such that $a(\hat{s}) \succ b(\hat{s})$.
Using utility, $U(a(s)) \geq U(b(s))$ for every state s and there is at least one state \hat{s} such that $U(a(\hat{s}))>U(b(\hat{s}))$.

- a_{1} weakly dominates a_{2}
- a_{3} weakly dominates a_{1}
- a_{3} strictly (and thus also weakly) dominates a_{2}.
a and b are equivalent, if, for every state $s, a(s) \sim b(s)$ or, in terms of utility, $U(a(s))=U(b(s))$.

Act a is weakly dominant if, for every other act b, either a weakly dominates b or a and b are equivalent.

In the above example, ...
Another example:

state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}	
act \downarrow					
a_{1}		1	3	3	2
a_{2}	0	2	1	2	
a_{3}		1	3	3	2

You are bidding against a computer for an item that you value at $\$ \mathbf{3 0}$. The allowed bids are $\$ 10, \$ 20, \$ 30, \$ 40$ and $\$ 50$. The computer will pick one of these bids randomly. Let x be the bid generated by the computer. If your bid is greater than or equal to x then you win the object and you pay not your bid but the computer's bid. If your bid is less than x then you get nothing and pay nothing.

Now same as above, but if you win the object and pay your own bid.
computer's bid \rightarrow
your bid \downarrow
$\$ 10$

state \rightarrow	s_{1}	s_{2}	s_{3}	Dominance:
act \downarrow				
a_{1}	4	3	1	
a_{2}	6	2	2	
a_{3}	5	3	2	
a_{4}	6	1	0	
a_{5}	3	2	5	

So we can simplify

$$
\begin{array}{rccc}
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} \\
\text { act } \downarrow & & & \\
a_{2} & 6 & 2 & 2 \\
a_{3} & 5 & 3 & 2 \\
a_{5} & & 3 & 2
\end{array}
$$

What then?

First a different example:

state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a_{1}	4	3	1
a_{2}	3	2	2
a_{3}	5	3	2
a_{4}	6	1	0
a_{5}	3	3	4

One criterion that can be used is the MaxiMin criterion.

MaxiMin $=$

A refinement is the LexiMin

$$
\left.\begin{array}{rccc}
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} \\
\text { act } \downarrow & & & \\
a_{2} & & 6 & 2
\end{array}\right) 2
$$

Here the LexiMin picks
One more example:

state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a_{1}	2	3	1	5
a_{2}	6	2	2	3
a_{3}	5	3	2	4
a_{4}	6	1	0	7
a_{5}	3	2	5	1

Special case: outcomes are sums of money

state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a_{1}		$\$ 12$	$\$ 30$	$\$ 0$

Suppose that we are able to assign probabilities to the states:

$$
\begin{array}{lllll}
\text { state } \rightarrow & s_{1} & s_{2} & s_{3} & s_{4} \\
& \frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12}
\end{array}
$$

a_{1} is the lottery
a_{2} is the lottery
a_{3} is the lottery
The expected values are:

Definition of attitude to risk
Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

$$
\text { between }\binom{\mathbb{E}[L]}{1} \text { and } L \text { or, written more simply, between } \mathbb{E}[L] \text { and } L
$$

If she says that

- $\mathbb{E}[L] \succ L$ we say that she is risk
- $\mathbb{E}[L] \sim L$ we say that she is risk
- $L \succ \mathbb{E}[L]$ we say that she is risk

relative to L

relative to L
relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since
$\mathbb{E}\left[a_{1}\right]=10.5$
$\mathbb{E}\left[a_{2}\right]=24$
$\mathbb{E}\left[a_{3}\right]=14$

Can we infer risk attitudes from choices?

Let $L=\left(\begin{array}{cc}\$ 40 & \$ 60 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \quad$ Then $\mathbb{E}[L]=$
Suppose Ann's preferences are transitive, she prefers more money to less and she says that she prefers $\$ 49$ to L.

Suppose Bob's preferences are transitive, he prefers more money to less and he says that he prefers $\$ 51$ to L.

