People tend to be risk-averse towards gains, but risk-loving towards losses.

Can such an attitude be compatible with expected utility?

Choice between
$$A:\begin{pmatrix} +\$50\\1 \end{pmatrix}$$
 and $B:\begin{pmatrix} +\$100 & +\$0\\\frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Suppose that **she prefers** the sure gain: she prefers **A**. Then she displays **risk-aversion towards gains** (the expected value of these two options is the same).

Choice between
$$C: \begin{pmatrix} -\$50 \\ 1 \end{pmatrix}$$
 and $D: \begin{pmatrix} -\$100 & -\$0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Suppose that **she prefers** the risky prospect: she prefers **D**. **Then she is risk-loving towards losses** (the expected value of these two options is the same).

Is there a von Neumann-Morgenstern utility function that is consistent with these choices?

 $U \qquad A = \begin{pmatrix} +\$50 \\ 1 \end{pmatrix} \succ B = \begin{pmatrix} +\$100 & +\$0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ outcome \$200 \$150 \$100 (\$50 \$0

Suppose that her initial wealth is \$100.

Hence it is possible for an expected-utility maximizing individual to display risk aversion towards a gain and risk love towards a symmetric loss.

However, this cannot happen at every wealth level.

Beginning wealth: \$200. Choice between
$$A: \begin{pmatrix} +\$50 \\ 1 \end{pmatrix}$$
 and $B: \begin{pmatrix} +\$100 & +\$0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Beginning wealth: \$200. Choice between
$$C: \begin{pmatrix} -\$50\\ 1 \end{pmatrix}$$
 and $D: \begin{pmatrix} -\$100 & -\$0\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Can she prefer A to B and also D to C? Let's see.

		Since she prefers D to C, she prefers
outcome	U	
\$200	1	
\$150	a	
\$100	b	
\$50	С	
\$0	0	

Thus people who are consistently (that is, at every initial level of wealth) riskaverse towards gains and risk-loving towards losses cannot satisfy the axioms of expected utility. If those axioms capture the notion of rationality, then those people are irrational.

VALUE of INFORMATION

The general case (non-monetary outcomes)

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$				utility
	10	10	Z	4		best	Z_8	96
state \rightarrow	S_1	S_2	S_3	<i>S</i> ₄			Z_4	80
act \downarrow							Z_5	48
а	Z_1	Za	Za	Z	suppose:		z_1, z_2	32
	∼l	~2	~3	~4	11		z_3, z_6	16
b	Z_5	Z_6	Z_7	Z_8		worst	Z_7	0

probability
$$\rightarrow \frac{1}{16} \quad \frac{3}{16} \quad \frac{1}{2} \quad \frac{1}{4}$$

state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$
act \downarrow
then a
 b

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$
state \rightarrow	<i>s</i> ₁	S_2	<i>s</i> ₃	S_4
act \downarrow				
a	32	32	16	80
b	48	16	0	96

In the absence of further information.

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

Suppose now that the DM is offered **perfect information for free**.

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$			
state \rightarrow	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	•	If told s_1 she chooses	and gets utility
act ↓					•	If told s_2 she chooses	and gets utility
а	32	32	16	80	•	If told s_3 she chooses	and gets utility
b	48	16	0	96	•	If told s_4 she chooses	and gets utility

Her expected utility under free perfect information is

Free perfect information means an **increase in expected utility** of

How to monetize the value of information in the general case

probability
$$\rightarrow q \quad 1-q$$

state $\rightarrow s_1 \quad s_2$
act \downarrow
 $a \quad y_1 \quad y_2$
 $b \quad y_3 \quad y_4$

To avoid triviality let us assume that it is not the case that one act dominates the other. Assume that

$$U(y_1) > U(y_3)$$
 and $U(y_4) > U(y_2)$

Not enough to tell which act the DM would choose. Assume that he would choose act *a*:

$$qU(y_1) + (1-q)U(y_2) > qU(y_3) + (1-q)U(y_4)$$

What is the maximum price that the DM would be willing to pay for perfect information?

Each outcome y_i should be thought of a list of all the things that the DM cares about (wealth is just one of them). Separate from each y_i the wealth part and write the outcome as (z_i, W_i) where z_i is that part of y_i that does not refer to the DM's wealth and W_i is the DM's wealth in outcome y_i :

probability
$$\rightarrow q \qquad 1-q$$

state $\rightarrow s_1 \qquad s_2$
act \downarrow
 $a \qquad (z_1, W_1) \qquad (z_2, W_2)$
 $b \qquad (z_3, W_3) \qquad (z_4, W_4)$

Our assumption is that $U(y_1) > U(y_3)$ and $U(y_4) > U(y_2)$ thus

$$U(z_1, W_1) > U(z_3, W_3)$$
 and $U(z_4, W_4) > U(z_2, W_4)$

What would he choose if, having paid \$*p* for perfect information, he were informed that the state was s_1 ? In general, we cannot infer from $U(z_1, W_1) > U(z_3, W_3)$ that $U(z_1, W_1 - p) > U(z_3, W_3 - p)$. Assume this, however and, similarly, $U(z_4, W_4 - p) > U(z_2, W_2 - p)$. Then if informed that S_1 the DM would choose and if informed that S_2 then he would choose . Thus with perfect information his expected utility would be

The maximum price the DM is willing to pay for perfect information is that value of *p* that solves the equation:

In Chapter 9 of the book (Section 9.3) there is a detailed (more complex) example along these lines.

Suppose now that the DM is offered, for free, IMPERFECT information of the form $\{\{s_1, s_2\}, \{s_3, s_4\}\}$.

probability \rightarrow

state \rightarrow

a

b

act \downarrow

probability $\rightarrow \frac{1}{16} \quad \frac{3}{16} \quad \frac{1}{2} \quad \frac{1}{4}$ state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$ act \downarrow $a \qquad 32 \quad 32 \quad 16 \quad 80$ $b \qquad 48 \quad 16 \quad 0 \quad 96$

Re-write the probabilities

in term	s of a com	mon dend	ominator:

• If told $\{s_1, s_2\}$ then

probability \rightarrow			
state \rightarrow	S_1	<i>s</i> ₂	
act ↓			
a	32	32	
b	48	16	

—

 S_1

32

48

 S_2

32

16

*S*₃

16

0

—

 S_4

80

96

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

Thus would choose and expect a utility of

probability	1	3	8	4
probability ->	16	16	16	16
state \rightarrow	S_1	S_2	S_3	S_4

• If told $\{s_3, s_4\}$ then:

probability \rightarrow		
state \rightarrow	<i>s</i> ₃	<i>s</i> ₄
act ↓		0.0
а	16	80
b	0	96

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

Expected utility from free information is

Note: the same utility as under no information. Why?

Information is valuable only if it induces you to take a different action (than the action you would choose under no information), in response to at least one of the possible items of information.

See doctors' example in the textbook.