People tend to be risk-averse towards gains, but risk-loving towards losses.

Can such an attitude be compatible with expected utility?
Choice between $A:\binom{+\$ 50}{1}$ and $B:\left(\begin{array}{cc}+\$ 100 & +\$ 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \quad A>B$
Suppose that she prefers the sure gain: she prefers A. Then she displays risk-aversion towards gains (the expected value of these two options is the same).

Choice between $C:\binom{-\$ 50}{1}$ and $D:\left(\begin{array}{cc}-\$ 100 & -\$ 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.

$$
D>C
$$

Suppose that she prefers the risky prospect: she prefers \mathbf{D}. Then she is risk-loving towards losses (the expected value of these two options is the same).

Is there a von Neumann-Morgenstern utility function that is consistent with these choices?

Suppose that her initial wealth is $\$ 100$.

$$
\begin{aligned}
& \left\lvert\, A=\binom{+\$ 50}{1} \succ B=\left(\begin{array}{cc}
+\$ 100 & +\$ 0 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right. \\
& E U(A)=\quad E U(B)=\frac{1}{2} U(200)+\frac{1}{2} U(100) \\
& U(150)=a \\
& =\frac{1}{2} 1+\frac{1}{2} b \\
& \text { From } \\
& A>B \text { infer } a>\frac{1}{2}+\frac{1}{2} b \\
& 2 a>1+b
\end{aligned}
$$

Hence it is possible for an expected-utility maximizing individual to display risk aversion towards a gain and risk love towards a symmetric loss.

$$
\begin{array}{ll}
a=0.8 & 2 . a=1.6 \\
b=0.5 & 1+b=1.5
\end{array}
$$

Page 14 of 16

$$
\begin{aligned}
& \text { normalizes } \\
& \begin{array}{|cc:c}
& \text { normalized } \\
\text { outcome } & & C:\binom{-\$ 50}{1}
\end{array} \text { and } D:\left(\begin{array}{cc}
-\$ 100 & -\$ 0 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& \begin{array}{l}
\$ 200 \\
\$ 150
\end{array} \\
& 1 \\
& \begin{array}{ll}
a \\
b & D>c
\end{array} \\
& \underbrace{E U(D)}>\underbrace{E U(C)} \\
& \frac{1}{2} U(0)+\frac{1}{2} U(100) \\
& =V(50)=c \\
& =\frac{1}{2} b
\end{aligned}
$$

From $\Delta>c$ infer $\frac{1}{2} b>c$

$$
c=0.2
$$

$$
\text { or } b>2 c
$$

Yes it is possible: for
example

$$
\begin{aligned}
& a=0.8 \\
& b=0.5 \\
& c=0.2
\end{aligned}
$$

However, this cannot happen at every wealth level.
$\underline{\text { Beginning wealth: } \$ 200 \text {. Choice between } A:\binom{+\$ 50}{1} \text { and } B:\left(\begin{array}{cc}+\$ 100 & +\$ 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) . . ~}$

$$
A=\binom{250}{1} \quad B=\left(\begin{array}{ll}
300 & 200 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Beginning wealth: $\$ 200$. Choice between $C:\binom{-\$ 50}{1}$ and $D:\left(\begin{array}{cc}-\$ 100 & -\$ 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \cdot C=\binom{150}{\frac{1}{2}}=\left(\begin{array}{c}100 \\ \frac{1}{2} \\ \text { Can she prefer A to B and also D to C? Let's see. }\end{array}\right.$ (1) 200
C

Thus people who are consistently (that is, at every initial level of wealth) riskaverse towards gains and risk-loving towards losses cannot satisfy the axioms of expected utility. If those axioms capture the notion of rationality, then those people are irrational.

VALUE of INFORMATION
The general case (non-monetary outcomes)

3000

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a		32	32	16
	80			
b	48	16	0	96

In the absence of further information.

$$
\mathbb{E}[U(a)]=36 \leftarrow
$$

$$
\mathbb{E}[U(b)] \Longrightarrow 30
$$

$$
\left\{\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{3}\right\},\left\{s_{4}\right\}\right\}
$$

Suppose now that the DM is offered perfect information for free.

| probability \rightarrow | $\frac{1}{16}$ | $\frac{3}{16}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| state \rightarrow | s_{1} | s_{2} | s_{3} | s_{4} | - If told s_{1} she chooses b and gets utility | 48 |
| act \downarrow | | | | | - If told s_{2} she chooses a and gets utility | 32 |
| a | 32 | 32 | 16 | 80 | - If told s_{3} she chooses a and gets utility | 16 |
| b | 48 | 16 | 0 | 96 | - If told s_{4} she chooses b | and gets utility 96 |

Her expected utility under free perfect information is

$$
\frac{1}{16} 48+\frac{3}{16} 32+\frac{1}{2} 16+\frac{1}{4} 96=
$$

Free perfect information means an increase in expected utility of $=3+6+8+24=4104100$
from 36 to $41=5$

How to monetize the value of information in the general case

Assume that

Not enough to tell which act the DM would choose. Assume that he would choose act a :

$$
\underbrace{q U\left(y_{1}\right)+(1-q) U\left(y_{2}\right)}>\underbrace{q U\left(y_{3}\right)+(1-q) U\left(y_{4}\right)}
$$

if told s, then choose a
What is the maximum price that the DM would be willing to pay for perfect information? if told s_{2} choose b
Each outcome y_{i} should be thought of a list of all the things that the DM cares about (wealth is just one of them).
Separate from each y_{i} the wealth part and write the outcome as $\left(z_{i}, W_{i}\right)$ where z_{i} is that part of y_{i} that does not refer to the DM's wealth and W_{i} is the DM's wealth in outcome y_{i} :

$$
\mathbf{Y}_{\mathbf{1}}=\left(\mathbf{Z}_{\mathbf{1}}, \mathbf{W}_{\mathbf{1}}\right) \quad \begin{array}{ccc}
\text { probability } \rightarrow & q & 1-q \\
\text { state } \rightarrow & s_{1} & s_{2} \\
\text { act } \downarrow & & \\
a & \left(z_{1}, W_{1}\right) & \left(z_{2}, W_{2}\right) \\
b & \left(z_{3}, W_{3}\right) & \left(z_{4}, W_{4}\right)
\end{array}
$$

$$
U\left(z_{1}, w_{1}\right)>U\left(z_{3}, w_{3}\right)
$$

Page 5 of 6

$$
\begin{aligned}
& \text { probability } \rightarrow q \quad 1-q \\
& \text { If } y_{1} \gtrsim y_{3}, y_{2} \gtrsim y_{4} \\
& \text { state } \rightarrow \quad s_{1} \quad s_{2} \\
& \text { act } \downarrow \\
& \begin{array}{lll}
a & y_{1} & y_{2} \\
b & y_{3} & y_{4}
\end{array} \\
& \text { and at least one } \\
& \text { is not } \sim \\
& \text { When a (early) } \\
& \text { dominate, } b \\
& y_{1}>y_{3} \quad y_{4}>y_{2} \\
& U\left(y_{1}\right)>U\left(y_{3}\right) \text { and } U\left(y_{4}\right)>U\left(y_{2}\right)
\end{aligned}
$$

Our assumption is that $U\left(y_{1}\right)>U\left(y_{3}\right)$ and $U\left(y_{4}\right)>U\left(y_{2}\right)$ thus

$$
U\left(z_{1}, W_{1}\right)>U\left(z_{3}, W_{3}\right) \text { and } U\left(z_{4}, W_{4}\right)>U\left(z_{2}, W_{4}\right)
$$

What would he choose if, having paid $\$ p$ for perfect information, he were informed that the state was s_{1} ? In general, we cannot infer from $U\left(z_{1}, W_{1}\right)>U\left(z_{3}, W_{3}\right)$ that $U\left(z_{1}, W_{1}-p\right)>U\left(z_{3}, W_{3}-p\right)$. Assume this, however and, similarly, $U\left(z_{4}, W_{4}-p\right)>U\left(z_{2}, W_{2}-p\right)$. Then if informed that S_{1} the DM would choose a and if informed that
s_{2} then he would choose b. Thus with perfect information his expected utility would be

$$
g \cup\left(z_{1}, w_{1}-p\right)+(1-q) \cup\left(z_{4}, w_{4}-p\right)=g \cup\left(z_{1}, w_{1}\right)
$$

$$
+(1-q) \cup\left(z_{2}, w_{2}\right)
$$

The maximum price the DM is willing to pay for perfect information is that value of p that solves the equation? $\left(z_{2}, W_{2}\right)$

$$
\begin{array}{r}
\text { willing to pay up to solution to } \uparrow \text { in } \\
\text { rems of } p
\end{array}
$$

In Chapter 9 of the book (Section 9.3) there is a detailed (more complex) example along these lines.

