People tend to be risk-averse towards gains, but risk-loving towards losses.

Can such an attitude be compatible with expected utility?

Choice between
$$A:\begin{pmatrix} +\$50\\ 1 \end{pmatrix}$$
 and $B:\begin{pmatrix} +\$100 & +\$0\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $A > B$

Suppose that **she prefers** the sure gain: she prefers **A**. Then she displays **risk-aversion towards gains** (the expected value of these two options is the same).

Choice between
$$C:\begin{pmatrix} -\$50\\ 1 \end{pmatrix}$$
 and $D:\begin{pmatrix} -\$100 & -\$0\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Suppose that **she prefers** the risky prospect: she prefers **D**. **Then she is risk-loving towards losses** (the expected value of these two options is the same).

Is there a von Neumann-Morgenstern utility function that is consistent with these choices?

Suppose that her initial wealth is \$100.

Hence it is possible for an expected-utility maximizing individual to display risk aversion towards a gain and risk love towards a symmetric loss.

a = 0.8 $2 \cdot a = 1.6$ b = 0.5 1+b = 1.5

Page 14 of 16

outcome \$200	normalizej 1	$C:\left(\begin{array}{c} \cdot \\ \cdot \end{array} ight)$	$\begin{pmatrix} -\$50 \\ 1 \end{pmatrix}$ an	d	$D: \begin{pmatrix} -\$100 & -\$0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$	
\$150 \$100 \$50	a b c		$\square \succ c$	2		
\$0	U	EVID) > (\smile	V(c) $V(so) = c$	
	-	- <u> </u> U(100) Z		-	V(36) = C	
T	$= \frac{1}{2}$		C		lbsc	C=0.2
I	70m [J≻C i			b > 2c	0.570.4
í e	s it	is pos	sible	و	: for	

example a = 0.8b = 0.5c = 0.2

However, this cannot happen at every wealth level.

Beginning wealth: \$200. Choice between
$$A: \begin{pmatrix} +550 \\ 1 \end{pmatrix}$$
 and $B: \begin{pmatrix} +5100 & +50 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

$$A = \begin{pmatrix} 250 \\ 1 \end{pmatrix} \qquad B = \begin{pmatrix} 350 & 200 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
Beginning wealth: \$200. Choice between $C: \begin{pmatrix} -550 \\ 1 \end{pmatrix}$ and $D: \begin{pmatrix} -5100 & -50 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

$$C = \begin{pmatrix} 150 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 160 & 200 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
Can she prefer A to B and also D to C? Let's see.
Since she prefers D to C, she prefers

$$D > C$$

$$E \cup (D) = \frac{1}{2} \cup (160) + \frac{1}{2} \cup (200) > E \cup (c) = \bigcup (150)$$

$$\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}$$

Page 15 of 16

Thus people who are consistently (that is, at every initial level of wealth) riskaverse towards gains and risk-loving towards losses cannot satisfy the axioms of expected utility. If those axioms capture the notion of rationality, then those people are irrational.

VALUE of INFORMATION

The general case (non-monetary outcomes)

							V		\mathbf{V}
probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$			utility		
	-	-			best	Z_8	96	X 100	9600
state \rightarrow	S_1	S_2	<i>S</i> ₃	S_4		Z_4	80	x (00	8000
act ↓						Z_5	48	× 100	4800
а	Z_1	7	Z_3	7.	suppose:	Z_1, Z_2	32	x 100	3200
_	21	\boldsymbol{z}_2	23	- 4		Z_3, Z_6	16	× IOU	1600
b	Z_5	Z_6	Z_7	Z_8	worst	Z_7	0	x 100	D

probability $\rightarrow \frac{1}{16} \quad \frac{3}{16} \quad \frac{1}{2} \quad \frac{1}{4}$ state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$ act \downarrow then $a \quad 32 \quad 32 \quad 16 \quad 80$ $b \quad 48 \quad 16 \quad 0 \quad 96$

$$EU(a) = \frac{1}{16} 32 + \frac{3}{16} 32 + \frac{1}{2} 16 \frac{1}{4} 80 = 2 + 6 + 8 + 20 = 36$$

$$EU(b) = \frac{1}{16} 48 + \frac{3}{16} 16 + \frac{1}{96} 96 = 3 + 3 + 24 = 30$$

3600
3000

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$
state \rightarrow	<i>S</i> ₁	S_2	<i>S</i> ₃	S_4
act \downarrow				
a	32	32	16	80
b	48	16	0	96

In the absence of further information.

 $\mathbb{E}[U(a)] = 36 \Leftarrow$

{ { S1}, { S2}, { S3}, { S4} }

Suppose now that the DM is offered perfect information for free.

probability \rightarrow	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{4}$	
state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>s</i> ₄	• If told s_1 she chooses b and gets utility 4 8
act ↓					• If told s_2 she chooses $\boldsymbol{\alpha}$ and gets utility 32
a	32	32	16	80	• If told s_3 she chooses c_1 and gets utility l_6
b	48	16	0	96	• If told s_4 she chooses b and gets utility 76
		I			

Her expected utility under free perfect information is $48 + \frac{3}{16} + \frac{3}{16} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{$

from 3600 to 4100 = 500

 $F_{row} = 36 \text{ to } 41 = 5$

How to monetize the value of information in the general case

probability $\rightarrow q \quad 1-q$ state $\rightarrow s_1$ S_{2} act \downarrow a y_1 y_2 h y_3 \mathcal{Y}_{4}

To avoid triviality let us assume that it is not the case that one act dominates the other.

Assume that

 $\gamma_1 = (z_1, W_1)$

 $\begin{array}{c} \mathbf{y_1} \\ \mathbf{y_3} \\ U(y_1) > U(y_3) \text{ and } U(y_4) > U(y_2) \end{array}$

Not enough to tell which act the DM would choose. Assume that he would choose act *a*:

$$qU(y_1) + (1-q)U(y_2) > qU(y_3) + (1-q)U(y_4)$$

What is the maximum price that the DM would be willing to pay for perfect information?

Each outcome y_i should be thought of a list of all the things that the DM cares about (wealth is just one of them). Separate from each y_i the wealth part and write the outcome as (z_i, W_i) where z_i is that part of y_i that does not refer to the DM's wealth and W_i is the DM's wealth in outcome y_i :

probability \rightarrow 1-qa state \rightarrow S_1 S_2 act \downarrow $(z_1, W_1) \quad (z_2, W_2)$ a $(z_3, W_3) (z_4, W_4)$ b

 $U(z_1, w_1) > U(z_3, w_2)$

1F 1/2 × 13, 12 2 14

and at least one

Men a (wearly)

rule Mis

if told S. Men

out

if told so choose b

is not n

dowincte,

Page 5 of 6

IF I have to pay \$p for perfect information

Our assumption is that $U(y_1) > U(y_3)$ and $U(y_4) > U(y_2)$ thus

 $U(z_1, W_1) > U(z_3, W_3)$ and $U(z_4, W_4) > U(z_2, W_4)$

What would he choose if, having paid \$p for perfect information, he were informed that the state was s_1 ? In general, we cannot infer from $U(z_1, W_1) > U(z_3, W_3)$ that $U(z_1, W_1 - p) > U(z_3, W_3 - p)$. Assume this, however and, similarly, $U(z_4, W_4 - p) > U(z_2, W_2 - p)$. Then if informed that S_1 the DM would choose $^{\bigcirc}$ and if informed that s_2 then he would choose $^{\bigcirc}$. Thus with perfect information his expected utility would be $\mathcal{Q} \cup (\mathbb{Z}_1, \mathbb{W}_1 - \mathbb{P}) + (1 - \mathbb{Q}) \cup (\mathbb{Z}_4, \mathbb{W}_4, -\mathbb{P}) = \mathcal{Q} \cup (\mathbb{Z}_1, \mathbb{W}_1) + (1 - \mathbb{Q}) \cup (\mathbb{Z}_4, \mathbb{W}_4, -\mathbb{P})$ The maximum price the DM is willing to pay for perfect information is that value of p that solves the equation.

In Chapter 9 of the book (Section 9.3) there is a detailed (more complex) example along these lines.