ECN 106 Final Exam

Wednesday, March 20, 10:30am-12:30pm in this room (Giedt 1003)
Office hours on Tuesday, time TBA

- Four questions. Two questions on the material after the third Midterm (Chapters 11, 12 and 13), two questions on earlier material.
- What you can skip:
- Chapter 5: No need to memorize the axioms of expected utility (Section 5.3)
- Chapter 7: Simpson's paradox (Section 7.3)
- Chapter 8: Belief revision and Information and truth (Sections 8.3 and 8.4)
- Chapter 9: Different sources of information (Section 9.4)
- Chapter 11: Proof of Arrow's theorem (Section 11.3)
- Chapter 12: Proof of Gibbard-Satterthwaite's theorem (Section 12.4)
- Chapter 13: The confirmation bias and The psychology of decision making (Sections 13.5 and 13.6)

Review

1. Choice under certainty. Completeness and transitivity. Ordinal utility function.
2. Choice under uncertainty: States, outcomes, and acts. Strict/weak dominance. Difference between " a is a dominant act" and " a dominates b ". MaxiMin. Leximin.
state $\rightarrow \quad s_{1} \quad s_{2}$
act \downarrow
a
b
(4) 8

37
25
d (5) 0
state $\rightarrow s_{1} \quad s_{2}$
act \downarrow
a
c $\quad 2 \quad 5$
$d \quad 40$
state $\rightarrow S_{1} \quad s_{2}$
act \downarrow
a (4) $\lcm{8}$
$b \quad$ (3) 7
$c \quad$ (2) 5
$d \quad 40$
e (4)5
a strictly dominates b
a " n c
but a is not a dominant act
a is a weakly dominant act
$\{a, e\} \longrightarrow$ Leximin a
3. Attitudes to risk. Money lotteries, expected value and risk neutrality. Risk aversion. Risk love.

$$
E V(B)=14
$$

Ann prefers $A=\binom{\$ 15}{1}$ to $B=\left(\begin{array}{cc}\$ 8 & \$ 20 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$. What is her attitude to risk?
4. Decision trees. Sequential decisions. Backward induction.

Consider a money-loving individual who faces the following decision:

5. Expected utility: Part 1. vo Neumann-Morgenstern utility functions. Normalization.
Suppose there are 6 basic outcomes. What is a utility function?

$$
v: \begin{array}{llllll}
& z_{1} & z_{2} & z_{3} & z_{4} & z_{5} \\
z_{6} \\
3 & 5 & 10 & 1 & 2 & 20
\end{array}
$$

Suppose $Z=\{\$ 9, \$ 16, \$ 25, \$ 36\}$. Suppose the individual is indifferent between $A=\binom{\$ 16}{1}$ and $B=\left(\begin{array}{cc}\$ 9 & \$ 36 \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$. Construct a vNM utility function such that $U(\$ 9)=3$ and $U(\$ 36)=6$.

$\$ 9$	$\$ 16$	$\$ 25$	$\$ 36$
3	4	$?$	6
worst			best

$$
\begin{aligned}
& U(\$ 16)= \\
& \frac{2}{3} 3+\frac{1}{3} 6=2+2=
\end{aligned}
$$

Is it the case that $U(\$ x)=\sqrt{x}$? Not enough in formation

Suppose $Z=\{\$ 9, \$ 16, \$ 25, \$ 36\}$. What is the normalized utility function of a risk neutral person?

$$
\text { Suppose } \quad U(\$ 25)=4.5
$$

	3	4	4.5	6	
Step 1	0	1	1.5	3	
Step 2	0	$\frac{1}{3}$	$\frac{1.5}{3}$	1	\leftarrow normalizer U
risk_neurval	$\$ 9$	$\$ 16$	$\$ 25$	$\$ 36$	
individual	9	16	25	36	4
Step 1	0	7	16	27	
Strep 2	0	$\frac{7}{27}$	$\frac{16}{27}$	1	\leftarrow normalized

6. Expected utility: Part 2. Decision trees again. MinMax Regret with cardinal utility.

Utility: | | | s_{1} | s_{2} |
| :---: | :---: | :---: | :---: |
| | a | 9 | s_{3} |
| b | 6 | 2 | 2 |
| | c | 0 | 5 |

 \uparrow weight attacked to
Hurwicz index of pessimism α
$H_{\alpha}(a)=1 \cdot \alpha+9(1-\alpha)$
if $\alpha=1$ then
$H_{\alpha}(b)=2 \cdot \alpha+6(1-\alpha)$
$H_{\alpha}(c)=0 . \alpha+6(1-\alpha)$
For example, if $\alpha=\frac{1}{3}$ then
7. Conditional probability. Bayes' formula: $P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}$. Bayes' theorem: $P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P(F \mid \neg E) P(\neg E)}$. A simple rule for updating a probability distribution over a finite set.

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
& \text { assuming } P(F) \neq 0
\end{aligned}
$$

8. The value of information. Perfect information vs imperfect information. Does information have the potential to change your decision? What information should be chosen?
9. Intertemporal choice: (A) the discounted utility model. Discounting and present value. Discount factor, discount rate. Time consistency. $S \geq t$

$$
U_{t}(x, s)=\delta^{s-t} \underbrace{u_{s}(x)} \quad \begin{gathered}
\delta \text { discour } \\
\text { factor } \\
0<\delta<1
\end{gathered}
$$

time
consistency

$$
= \begin{cases}u_{s}(x) & s=t \\ \delta^{s-t} u_{s}(x) & s>t\end{cases}
$$

10. Intertemporal choice: (B) hyperbolic discounting. Conflict between current and future preferences. Time inconsistency. Pre-commitment. Anticipating with time inconsistency: backward induction.

$$
U_{t}(x, s)=\left\{\begin{array}{ccr}
u_{s}(x) & s=t & \beta=\text { present } \\
\beta \delta^{s-t} u_{s}(x) & s>t & \text { bias }
\end{array}\right.
$$

possibility of time inconsistency

11. Group decision making: (A) social preference

 functions. Desirable properties (1. Freedom of expression, 2.Rationality, 3. Unanimity, 4. Independence of irrelevant alternatives, 5. Non-dictatorship). Arrow's theorem.

$$
\text { also } \succsim \text { for sociery }
$$

12. Group decision making: (B) social choice functions.

Desirable properties (1. Unanimity, 2. Non-dictatorship, 3. Nonmanipulability). The Gibbard-Satterthwaite theorem.
one alternative

