PRACTICE THIRD MIDTERM: ANSWERS

1. (a)

Total number of students	10,000	Percentage of total
Number of students who got an A	2,000	20%
Number of students who got a B	8,000	80%
Number of students who got P in midterm and A in the course	1500 (75% of 2,000)	15%
Number of students who got F in midterm and A in the course	500 (25% of 2,000)	5%
Number of students who got P in midterm and B in the course	4,000 (50% of 8,000)	40%
Number of students who got F in midterm and B in the course	4,000 (50% of 8,000)	40%

(b) 0.2 (or 20%).
(c)
$$\frac{1,500}{1,500+4,000} = 0.27$$
 (or 27%).
(d) $\frac{4,000}{500+4,000} = 0.89$ (or 89%).
(e) 0.15 (or 15%).

2. (a) For Ann
$$U_0(\$100 \text{ in 4 years}) = (0.9)^4(\sqrt{100}) = 6.561$$
 and $U_0(\$400 \text{ in 6 years}) = (0.9)^6(\sqrt{400}) = 10.629$. Thus she chooses to get \$400 in 6 years.

- (**b**) For Christina, $U_0(\$100 \text{ in 4 years}) = (0.7)(0.8)^4(\sqrt{100}) = 2.867$ and $U_0(\$400 \text{ in 6 years}) = (0.7)(0.8)^6(\sqrt{400}) = 3.67$. Thus she too chooses to get \$400 in 6 years.
- (c) For Ann U_4 (\$100 now)= $\sqrt{100}$ = 10 and U_4 (\$400 in 2 years) = $(0.9)^2(\sqrt{400})$ = 16.2. Thus she chooses \$400 in two years.
- (d) For Christina U_4 (\$100 now)= $\sqrt{100}$ = 10 and U_4 (\$400 in 2 years) = (0.7)(0.8)² ($\sqrt{400}$) = 8.96. Thus she changes her mind and chooses to get \$100 right away.
- (e) Yes, because after 4 years she confirms her earlier choice.
- (f) No, because after 4 years she changes her initial plan.

3. (a) $EU(a) = \frac{1}{3}5 + \frac{1}{12}5 + \frac{1}{6}4 + \frac{1}{4}2 + \frac{1}{6}2 = 3.583$, $EU(b) = \frac{1}{3}6 + \frac{1}{12}1 + \frac{1}{6}6 + \frac{1}{4}1 + \frac{1}{6}1 = 3.5$ and $EU(c) = \frac{1}{3}0 + \frac{1}{12}4 + \frac{1}{6}1 + \frac{1}{4}5 + \frac{1}{6}0 = 1.75$. Thus in the absence of information you would choose *a* and have an expected utility of 3.583.

(b.1) If you receive information $\{s_1, s_2, s_3\}$, you will update you beliefs as follows:

probability	$\frac{4}{7}$	$\frac{1}{7}$	$\frac{2}{7}$		
state \rightarrow	s_1	s_2	<i>s</i> ₃		EU(a) = -5 + -5 + -4 = 4.714,
act↓				and compute	$FU(b) = \frac{4}{6} + \frac{1}{1} + \frac{2}{6} = 5286$
а	5	5	4	and compute	20(0) = 707777
b	6	1	6		$EU(c) = \frac{4}{-}0 + \frac{1}{-}4 + \frac{2}{-}1 = 0.857$
С	0	4	1		7 7 7

Thus if informed that $\{s_1, s_2, s_3\}$ you would choose *b* and have an expected utility of 5.286.

(b.2) If you received information $\{s_4, s_5\}$ you will update you beliefs as follows:

probability	$\frac{3}{5}$	$\frac{2}{5}$		3, 2,
state \rightarrow	s_4	<i>S</i> ₅		$EU(a) = \frac{1}{5}2 + \frac{1}{5}2 = 2,$
act↓			and compute	$EU(b) = \frac{3}{2}1 + \frac{2}{2}1 = 1$
а	2	2	and compute	$EU(b) = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = 1$
b	1	1		$EU(c) = \frac{3}{5} + \frac{2}{-0} = 3$
С	5	0		5 5

Thus if informed that $\{s_4, s_5\}$ you would choose *c* and have an expected utility of **3**.

(b.3) The probability of being informed that $\{s_1, s_2, s_3\}$ is $\frac{1}{3} + \frac{1}{12} + \frac{1}{6} = \frac{7}{12}$ and the probability of

being informed that $\{s_4, s_5\}$ is $\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$. Hence the expected utility of acquiring information is

 $\frac{7}{12}5.286 + \frac{5}{12}3 = 4.33$. Hence acquiring information increases your expected utility from 3.583 to 4.33.