ECON 106 : DECISION MAKING

PRACTICE FINAL: ANSWERS

1.

(a) The possible outcomes are:

Z_1	Stays home, gets A
$\overline{z_2}$	Stays home, gets C
$\overline{Z_3}$	At party, good time with Kate, gets C
$\overline{z_4}$	At party, good time with Kate, gets F
Z.5	At party, rejected, gets C
Z_6	At party, rejected, gets F
$\overline{Z_7}$	At party, not approached by Kate, gets C
$\overline{Z_8}$	At party, not approached by Kate, gets F

(b) Each state specifies whether the exam is easy or difficult, whether Kate is attracted to him or not and whether Kate is shy or not. Thus there are 8 states:

$S_{e,a,s}$	easy, attracted, shy
$S_{e,a,ns}$	easy, attracted, not shy
$S_{e,na,s}$	easy, not attracted, shy
$S_{e,na,ns}$	easy, not attracted, not shy
S _{ne,a,s}	not easy, attracted, shy
S _{ne,a,ns}	not easy, attracted, not shy
S _{ne,na,s}	not easy, not attracted, shy
S _{ne,na,ns}	not easy, not attracted, not shy

The decision problem can the be written as follows:

	$S_{e,a,s}$	$S_{e,a,ns}$	$S_{e,na,s}$	$S_{e,na,ns}$	$S_{ne,a,s}$	$S_{ne,a,ns}$	$S_{ne,na,s}$	$S_{ne,na,ns}$
Stay home	Z_1	Z_1	Z_1	Z_1	Z_2	Z_2	Z_2	Z_2
Go to party, approach	Z3	Z.3	Z.5	Z.5	Z_4	Z_4	Z.6	Z ₆
Go to party, be cool	Z.7	Z.3	Z.7	Z_7	Z.8	Z_4	z_8	z_8

(c) We can take values from 0 to 5 as follows:

Outcome	Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7	Z_8
Utility	4	2	5	3	0	0	2	1

(d)		$S_{e,a,s}$	$S_{e,a,ns}$	$S_{e,na,s}$	$S_{e,na,ns}$	$S_{ne,a,s}$	$S_{ne,a,ns}$	$S_{ne,na,s}$	S _{ne,na,ns}
	Stay home	4	4	4	4	2	2	2	2
	Go to party, approach	5	5	0	0	3	3	0	0
	Go to party, be cool	2	5	2	2	1	3	1	1

No: for every two acts x and y, there is a state where x is better than y and there is another state where y is better than x.

(e)
$$E = \{s_{e,a,s}, s_{e,a,ns}, s_{e,a,ns}, s_{e,na,ns}\}, \neg E = \{s_{ne,a,s}, s_{ne,a,ns}, s_{ne,a,ns}, s_{ne,na,ns}\}$$

 $S = \{s_{e,a,s}, s_{e,na,s}, s_{ne,a,s}, s_{ne,na,s}\}, \neg S = \{s_{e,a,ns}, s_{e,na,ns}, s_{ne,a,ns}, s_{ne,na,ns}\}$
 $A = \{s_{e,a,s}, s_{e,a,ns}, s_{ne,a,s}, s_{ne,a,ns}\}, \neg A = \{s_{e,na,s}, s_{e,na,ns}, s_{ne,na,s}, s_{ne,na,ns}\}.$

(f) P(E | S) = P(E), $P(E | \neg S) = P(E)$, P(E | A) = P(E), $P(E | \neg A) = P(E)$, P(S | E) = P(S), $P(S | \neg E) = P(S)$, etc.

(g)
$$P(E) = P(s_{e,a,s}) + P(s_{e,a,ns}) + P(s_{e,na,s}) + P(s_{e,na,ns}) = 0.4$$

 $P(S) = P(s_{e,a,s}) + P(s_{e,na,s}) + P(s_{ne,a,s}) + P(s_{ne,na,s}) = 0.8$
 $P(A) = P(s_{e,a,s}) + P(s_{e,a,ns}) + P(s_{ne,a,s}) + P(s_{ne,a,ns}) = 0.5$

(h) Here we are assuming strong independence as follows:

$$P(E \cap S) = P(E \mid S) P(S) = P(E) P(S) = 0.4(0.8) = 0.32$$

$$P(E \cap A) = P(E \mid A) P(A) = P(E) P(A) = 0.4(0.5) = 0.2$$

$$P(A \cap S) = P(A \mid S) P(S) = P(A) P(S) = 0.5(0.8) = 0.4$$

by independence

Then the values are as follows:

$$\begin{split} P(s_{e,a,s}) &= P(E \cap A \cap S) = P(E \cap A \mid S) P(S) = P(E \cap A) P(S) = 0.2(0.8) = 0.16 \\ \text{by independence} \\ P(s_{e,a,ns}) &= P(E \cap A) - P(s_{e,a,s}) = 0.2 - 0.16 = 0.04 \\ P(s_{e,na,s}) &= P(E \cap A \cap S) = P(E \cap A \mid S) P(S) = P(E \cap A) P(S) \\ &= P(E) P(-A) P(S) = 0.4(0.5)(0.8) = 0.16 \\ \text{by independence} \\ P(s_{e,na,ns}) &= P(E \cap A) - P(s_{e,na,s}) = P(E) P(-A) - P(s_{e,na,s}) = 0.4(0.5) - 0.16 = 0.04 \\ P(s_{e,na,ns}) &= P(-E \cap A \cap S) = P(-E \cap A \mid S) P(S) = P(-E \cap A) P(S) \\ &= P(-E) P(A) P(S) = 0.6(0.5)(0.8) = 0.24 \\ P(s_{ne,a,ns}) &= P(-E \cap A) - P(s_{ne,a,s}) = P(-E) P(A) - P(s_{ne,a,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,s}) &= P(-E \cap A \cap S) = P(-E \cap A \mid S) P(S) = P(-E \cap A) P(S) \\ &= P(-E) P(-A) P(S) = 0.6(0.5)(0.8) = 0.24 \\ P(s_{ne,na,s}) &= P(-E \cap A \cap S) = P(-E \cap A \mid S) P(S) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,s}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,s}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5) - 0.24 = 0.06 \\ P(s_{ne,na,ns}) &= P(-E \cap A) - P(s_{ne,na,s}) = P(-E) P(-A) - P(s_{ne,na,s}) = 0.6(0.5$$

Thus the probability distribution is as follows:

$$\begin{aligned} s_{e,a,s} & s_{e,a,ns} & s_{e,na,s} & s_{ne,a,ns} & s_{ne,a,ns} & s_{ne,a,ns} & s_{ne,na,ns} & s_{ne,na,ns} \\ 0.16 & 0.04 & 0.16 & 0.04 & 0.24 & 0.06 & 0.24 & 0.06 \\ \end{aligned}$$
(i) Stay home = $\begin{pmatrix} z_1 & z_2 \\ 0.4 & 0.6 \end{pmatrix}$, To party/approach = $\begin{pmatrix} z_3 & z_4 & z_5 & z_6 \\ 0.2 & 0.3 & 0.2 & 0.3 \end{pmatrix}$
To party/cool = $\begin{pmatrix} z_3 & z_4 & z_7 & z_8 \\ 0.04 & 0.06 & 0.36 & 0.54 \end{pmatrix}$.

(j) We can normalize the utility function U so that $U(z_3) = 1$ and $U(z_5) = U(z_6) = 0$. Since

Jonathan is indifferent between $\begin{pmatrix} z_4 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} z_3 & z_5 \\ 0.6 & 0.4 \end{pmatrix}$, it must be that $U(z_4) = 0.6U(z_3) + 0.4U(z_5) = (0.6)1 + (0.4)0 = 0.6$. Thus the expected utility of

party/approach is

 $0.2U(z_3) + 0.3U(z_4) + 0.2U(z_5) + 0.3U(z_6) = 0.2(1) + 0.3(0.6) + 0.2(0) + 0.3(0) = 0.38$.

Hence, since he is indifferent between party/approach and staying home, it must be that the expected utility of staying home is equal to 0.38, that is,

 $0.4U(z_1) + 0.6U(z_2) = 0.38$. Thus all we know about the utility function is the following, with 1 > x > 0.6 > y > z > 0 and 0.4x + 0.6y = 0.38

Outcome Utility 1 Z_3 х Z_1 0.6 Z_{4} Z_2 y Z_7 y Z_8 Ζ, 0 Z_5 0 Z_6

(k) Two questions: (1) what value of p would make you indifferent between z_1 for sure and the

lottery $\begin{pmatrix} z_3 & z_5 \\ p & 1-p \end{pmatrix}$? (2) what value of q would make you indifferent between z_8 for sure and the lottery $\begin{pmatrix} z_3 & z_5 \\ q & 1-q \end{pmatrix}$? The answer to the first question gives the value of $U(z_1)$ and this, together with the equation $0.4U(z_1) + 0.6U(z_2) = 0.38$ enables you to figure out the value of $U(z_2)$. The answer to the second question gives the value of $U(z_8)$.

(I) Then Jonathan's utility function is

Outcome	Utility	
Z_3	1	
Z_1	0.8	
Z_4	0.6	
Z_2	0.1	
Z_7	0.1	
Z_8	0.05	
Z_5	0	
Z_6	0	
$U(z_2) = 0.4$	(0.8) + 0.6	b(0.1) = 0.38

Thus $EU(\text{stay home}) = 0.4U(z_1) + 0.6U(z_2) = 0.4(0.8) + 0.6(0.1) = 0.3$

 $EU(\text{party/approach}) = 0.2U(z_3) + 0.3U(z_4) + 0.2U(z_5) + 0.3U(z_6)$

$$= 0.2(1) + 0.3(0.6) + 0.2(0) + 0.3(0) = 0.38$$
$$EU(\text{party/cool}) = 0.04U(z_3) + 0.06U(z_4) + 0.36U(z_7) + 0.54U(z_8)$$
$$= 0.04(1) + 0.06(0.6) + 0.36(0.1) + 0.54(0.05) = 0.139$$

Thus Jonathan will either stay home or go to the party and approach Kate.

2. (A) Since the discount rate is $\rho = \frac{1}{9}$, the discount factor is $\delta = \frac{1}{1+\rho} = \frac{9}{10} = 0.9$. Thus

(a) $U_0(\$100 \text{ in } 6 \text{ years}) = (0.9)^6(100) = 53.14$ and $U_0(\$200 \text{ in } 8 \text{ years}) = (0.9)^8(200) = 86.09$. Thus she chooses to get \$200 in 8 years.

- (b) $U_6(\$100 \text{ now}) = 100$ and $U_6(\$200 \text{ in } 2 \text{ years}) = (0.9)^2(200) = 162$. Thus she will choose to get \$200 two years later.
- (c) Yes, her preferences are time consistent: she ranks the alternatives the same way at date 0 and at date 6.
- **(B)** (d) U_0 (\$100 in 6 years) = (0.6)(0.9)⁶(100) = 31.89 and

 U_0 (\$200 in 8 years) = (0.6)(0.9)⁸(200) = 51.66. Thus she chooses to get \$200 in 8 years.

- (e) $U_6(\$100 \text{ now}) = 100$ and $U_6(\$200 \text{ in } 2 \text{ years}) = (0.6)(0.9)^2(200) = 97.2$. Thus she will change her mind and choose \$100 right away.
- (f) No, because she changes her initial plan after 6 years.

- **3.** (a) With the Borda count and sincere voting x gets 22 points, a gets 17, b gets 16 and c gets
 - 15. Thus the social ranking is

```
x
a
b
c
```

If, after the election, x drops out then the next best candidate will be chosen, that is candidate a.

1	2	3	4	5	6	7
С	а	b	С	а	b	С
b	С	а	b	С	а	b
а	b	С	а	b	С	а

(**b**) Eliminating *x* from the above profile we have:

and using the Borda count with this profile we have that a gets 13 points, b gets 14 and c gets 15. Thus the social ranking becomes

c b a

that is, a complete reversal of the previous one! The winner is now *c*, who was the lowest ranked candidate before!

4. (a) When the range of the SCF has only two alternatives, plurality voting satisfies Unanimity, Non-dictatorship and Non-manipulability.

(b)						1						
$\begin{array}{c} 2^{\prime}s \rightarrow \\ 1^{\prime}s \checkmark \end{array}$	abc	acb	bac	bca	cab	cba	$\begin{array}{c} 2's \rightarrow \\ 1's \checkmark \end{array}$	abc	acb	bac	bca	cab	cba
abc	а	а	а	а	а	a	abc	а	а	а	а	а	а
acb	а	а	a	а	а	a	acb	а	a	a	а	а	a
bac	а	а	b	b	b	b	bac	а	а	b	b	b	b
bca	а	а	b	b	b	b	bca	а	а	b	b	b	b
cab	а	а	С	С	С	С	cab	а	а	С	С	С	С
cba	а	а	С	С	С	с	cba	а	а	С	С	С	С
3 reports abc									3 repo	rts acb			
$\begin{array}{c} 2^{\prime}s \rightarrow \\ 1^{\prime}s \checkmark \end{array}$	abc	acb	bac	bca	cab	cba	$\begin{array}{c} 2's \rightarrow \\ 1's \checkmark \end{array}$	abc	acb	bac	bca	cab	cba
abc	а	а	b	b	а	a	abc	а	а	b	b	а	a
acb	а	а	b	b	а	а	acb	а	а	b	b	а	а
bac	b	b	b	b	b	b	bac	b	b	b	b	b	b
bca	b	b	b	b	b	b	bca	b	b	b	b	b	b
cab	С	С	b	b	С	С	cab	С	С	b	b	С	С
cba	С	С	b	b	С	С	cba	С	С	b	b	С	С
			3 repo	rts bac						3 repo	rts bca		
1's ↓	abc	acb	bac	bca	cab	cba	1's ♥	abc	acb	bac	bca	cab	cba
abc	а	а	а	a	С	С	abc	а	a	а	а	С	С
acb	а	а	а	а	С	С	acb	а	а	а	а	С	С
bac	b	b	b	b	С	С	bac	b	b	b	b	С	С
bca	b	b	b	b	С	с	bca	b	b	b	b	С	С
cab	С	С	С	С	С	С	cab	С	С	С	С	С	С
cba	С	С	С	С	С	С	cba	С	С	С	С	С	С
3 reports cab									3 repo	rts cba			

This SCF satisfies Freedom of Expression, Unanimity and Non-dictatorship but violates Non-manipulability.