1.

(a) The possible outcomes are:

z_{1}	Stays home, gets A
z_{2}	Stays home, gets C
z_{3}	At party, good time with Kate, gets C
z_{4}	At party, good time with Kate, gets F
z_{5}	At party, rejected, gets C
z_{6}	At party, rejected, gets F
z_{7}	At party, not approached by Kate, gets C
z_{8}	At party, not approached by Kate, gets F

(b) Each state specifies whether the exam is easy or difficult, whether Kate is attracted to him or not and whether Kate is shy or not. Thus there are 8 states:

$s_{e, a, s}$	easy, attracted, shy
$s_{e, a, n s}$	easy, attracted, not shy
$s_{e, n a, s}$	easy, not attracted, shy
$s_{e, n a, n s}$	easy, not attracted, not shy
$s_{n e, a, s}$	not easy, attracted, shy
$s_{n, a, n s}$	not easy, attracted, not shy
$s_{n, n a, s}$	not easy, not attracted, shy
$s_{n e, n a, n s,}$	not easy, not attracted, not shy

The decision problem can the be written as follows:

	$S_{e, a, s}$	$S_{e, a, n s}$	$S_{e, n a, s}$	$S_{e, n a, n s}$	$S_{n e, a, s}$	$S_{n e, a, n s}$	$S_{n e, n a, s}$	$S_{n e, n a, n s}$
Stay home	z_{1}	z_{1}	z_{1}	z_{1}	z_{2}	z_{2}	z_{2}	z_{2}
Go to party, approach	z_{3}	z_{3}	z_{5}	z_{5}	z_{4}	z_{4}	z_{6}	z_{6}
Go to party, be cool	z_{7}	z_{3}	z_{7}	z_{7}	z_{8}	z_{4}	z_{8}	z_{8}

(c) We can take values from 0 to 5 as follows:
(d)

Outcome	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}	z_{8}			
Utility	4	2	5	3	0	0	2	1			
	$s_{e, a, s}$	$s_{e, a, n s}$	$s_{e, n a, s}$	$s_{e, n a, n s}$	$s_{n e, a, s}$	$s_{n e, a, n s}$	$s_{n e, n a, s}$	$s_{n e, n a, n s}$			
Stay home	4	4	4	4	2	2	2	2			
Go to party, approach	5	5	0	0	3	3	0	0			
Go to party, be cool	2	5	2		2	1	3	1	1		

No: for every two acts x and y, there is a state where x is better than y and there is another state where y is better than x.
(e) $E=\left\{s_{e, a, s}, s_{e, a, n s}, s_{e, a, n s}, s_{e, n a, n s}\right\}, \neg E=\left\{s_{n e, a, s}, s_{n e, a, n s}, s_{n e, a, n s}, s_{n e, n a, n s}\right\}$
$S=\left\{s_{e, a, s}, s_{e, n a, s}, s_{n e, a, s}, s_{n e, n a, s}\right\}, \neg S=\left\{s_{e, a, n s}, s_{e, n a, n s}, s_{n e, a, n s}, s_{n e, n a, n s}\right\}$
$A=\left\{s_{e, a, s}, s_{e, a, n s}, s_{n e, a, s}, s_{n e, a, n s}\right\}, \neg A=\left\{s_{e, n a, s}, s_{e, n a, n s}, s_{n e, n a, s}, s_{n e, n a, n s}\right\}$.
(f) $P(E \mid S)=P(E), P(E \mid \neg S)=P(E), P(E \mid A)=P(E), P(E \mid \neg A)=P(E)$, $P(S \mid E)=P(S), P(S \mid \neg E)=P(S)$, etc.
(g) $P(E)=P\left(s_{e, a, s}\right)+P\left(s_{e, a, n s}\right)+P\left(s_{e, n a, s}\right)+P\left(s_{e, n a, n s}\right)=0.4$
$P(S)=P\left(s_{e, a, s}\right)+P\left(s_{e, n a, s}\right)+P\left(s_{n e, a, s}\right)+P\left(s_{n e, n a, s}\right)=0.8$
$P(A)=P\left(s_{e, a, s}\right)+P\left(s_{e, a, n s}\right)+P\left(s_{n e, a, s}\right)+P\left(s_{n e, a, n s}\right)=0.5$
(h) Here we are assuming strong independence as follows:

$$
\begin{aligned}
& P(E \cap S)=P(E \mid S) P(S) \underset{\text { by independence }}{=} P(E) P(S)=0.4(0.8)=0.32 \\
& P(E \cap A)=P(E \mid A) P(A) \underset{\text { by independence }}{=} P(E) P(A)=0.4(0.5)=0.2 \\
& P(A \cap S)=P(A \mid S) P(S) \underset{\text { by independence }}{=} P(A) P(S)=0.5(0.8)=0.4
\end{aligned}
$$

Then the values are as follows:

$$
\begin{aligned}
& P\left(s_{e, a, s}\right)=P(E \cap A \cap S)=P(E \cap A \mid S) P(S) \underset{\text { by independence }}{=} P(E \cap A) P(S)=0.2(0.8)=0.16 \\
& P\left(s_{e, a, n s}\right)=P(E \cap A)-P\left(s_{e, a, s}\right)=0.2-0.16=0.04 \\
& P\left(s_{e, n a, s}\right)=P(E \cap \neg A \cap S)=P(E \cap \neg A \mid S) P(S) \underset{\text { by independence }}{=} P(E \cap \neg A) P(S) \\
& \quad=\quad P(E) P(\neg A) P(S)=0.4(0.5)(0.8)=0.16 \\
& \quad=\quad \begin{aligned}
\text { by independence }
\end{aligned} \\
& \begin{aligned}
& P\left(s_{e, n a, n s}\right)=P(E \cap \neg A)-P\left(s_{e, n a, s}\right)=P(E) P(\neg A)-P\left(s_{e, n a, s}\right)=0.4(0.5)-0.16=0.04 \\
& P\left(s_{n e, a, s}\right)=P(\neg E \cap A \cap S)=P(\neg E \cap A \mid S) P(S) \underset{\text { by independence }}{=} P(\neg E \cap A) P(S) \\
& \quad P(\neg E) P(A) P(S)=0.6(0.5)(0.8)=0.24 \\
& \quad \text { by independence }
\end{aligned} \\
& P\left(s_{n e, a, n s}\right)=P(\neg E \cap A)-P\left(s_{n e, a, s}\right)=P(\neg E) P(A)-P\left(s_{n e, a, s}\right)=0.6(0.5)-0.24=0.06 \\
& P\left(s_{n e, n a, s}\right)=P(\neg E \cap \neg A \cap S)=P(\neg E \cap \neg A \mid S) P(S) \underset{\text { by independence }}{=} P(\neg E \cap \neg A) P(S) \\
& \\
& \quad=P(\neg E) P(\neg A) P(S)=0.6(0.5)(0.8)=0.24 \\
& P\left(s_{n e, n a, n s}\right)=P(\neg E \cap \neg A)-P\left(s_{n e, n a, s}\right)=P(\neg E) P(\neg A)-P\left(s_{n e, n a, s}\right)=0.6(0.5)-0.24=0.06
\end{aligned}
$$

Thus the probability distribution is as follows:

$$
\begin{array}{llllllll}
S_{e, a, s} & S_{e, a, n s} & s_{e, n a, s} & S_{e, n a, n s} & s_{n e, a, s} & s_{n e, a, n s} & s_{n e, n a, s} & S_{n e, n a, n s} \\
0.16 & 0.04 & 0.16 & 0.04 & 0.24 & 0.06 & 0.24 & 0.06
\end{array}
$$

(i) Stay home $=\left(\begin{array}{cc}z_{1} & z_{2} \\ 0.4 & 0.6\end{array}\right)$, To party/approach $=\left(\begin{array}{llll}z_{3} & z_{4} & z_{5} & z_{6} \\ 0.2 & 0.3 & 0.2 & 0.3\end{array}\right)$ To party $/ \mathrm{cool}=\left(\begin{array}{llll}z_{3} & z_{4} & z_{7} & z_{8} \\ 0.04 & 0.06 & 0.36 & 0.54\end{array}\right)$.
(j) We can normalize the utility function U so that $U\left(z_{3}\right)=1$ and $U\left(z_{5}\right)=U\left(z_{6}\right)=0$. Since Jonathan is indifferent between $\binom{z_{4}}{1}$ and $\left(\begin{array}{cc}z_{3} & z_{5} \\ 0.6 & 0.4\end{array}\right)$, it must be that $U\left(z_{4}\right)=0.6 U\left(z_{3}\right)+0.4 U\left(z_{5}\right)=(0.6) 1+(0.4) 0=0.6$. Thus the expected utility of party/approach is $0.2 U\left(z_{3}\right)+0.3 U\left(z_{4}\right)+0.2 U\left(z_{5}\right)+0.3 U\left(z_{6}\right)=0.2(1)+0.3(0.6)+0.2(0)+0.3(0)=0.38$. Hence, since he is indifferent between party/approach and staying home, it must be that the expected utility of staying home is equal to 0.38 , that is, $0.4 U\left(z_{1}\right)+0.6 U\left(z_{2}\right)=0.38$. Thus all we know about the utility function is the following, with $1>x>0.6>y>z>0$ and $0.4 x+0.6 y=0.38$

Outcome	Utility
z_{3}	1
z_{1}	x
z_{4}	0.6
z_{2}	y
z_{7}	y
z_{8}	z
z_{5}	0
z_{6}	0

(k) Two questions: (1) what value of p would make you indifferent between z_{1} for sure and the lottery $\left(\begin{array}{cc}z_{3} & z_{5} \\ p & 1-p\end{array}\right)$? (2) what value of q would make you indifferent between z_{8} for sure and the lottery $\left(\begin{array}{cc}z_{3} & z_{5} \\ q & 1-q\end{array}\right)$? The answer to the first question gives the value of $U\left(z_{1}\right)$ and this, together with the equation $0.4 U\left(z_{1}\right)+0.6 U\left(z_{2}\right)=0.38$ enables you to figure out the value of $U\left(z_{2}\right)$. The answer to the second question gives the value of $U\left(z_{8}\right)$.
(l) Then Jonathan's utility function is

Outcome	Utility
z_{3}	1
z_{1}	0.8
z_{4}	0.6
z_{2}	0.1
z_{7}	0.1
z_{8}	0.05
z_{5}	0
z_{6}	0

Thus $E U($ stay home $)=0.4 U\left(z_{1}\right)+0.6 U\left(z_{2}\right)=0.4(0.8)+0.6(0.1)=0.38$
$E U($ party/approach $)=0.2 U\left(z_{3}\right)+0.3 U\left(z_{4}\right)+0.2 U\left(z_{5}\right)+0.3 U\left(z_{6}\right)$

$$
\begin{gathered}
=0.2(1)+0.3(0.6)+0.2(0)+0.3(0)=0.38 \\
E U(\text { party } / \text { cool })= \\
=0.04 U\left(z_{3}\right)+0.06 U\left(z_{4}\right)+0.36 U\left(z_{7}\right)+0.54 U\left(z_{8}\right) \\
=0.04(1)+0.06(0.6)+0.36(0.1)+0.54(0.05)=0.139
\end{gathered}
$$

Thus Jonathan will either stay home or go to the party and approach Kate.
2. (A) Since the discount rate is $\rho=\frac{1}{9}$, the discount factor is $\delta=\frac{1}{1+\rho}=\frac{9}{10}=0.9$. Thus
(a) $U_{0}(\$ 100$ in 6 years $)=(0.9)^{6}(100)=53.14$ and $U_{0}(\$ 200$ in 8 years $)=(0.9)^{8}(200)=86.09$. Thus she chooses to get $\$ 200$ in 8 years.
(b) $U_{6}(\$ 100$ now $)=100$ and $U_{6}(\$ 200$ in 2 years $)=(0.9)^{2}(200)=162$. Thus she will choose to get $\$ 200$ two years later.
(c) Yes, her preferences are time consistent: she ranks the alternatives the same way at date 0 and at date 6 .
(B) (d) $U_{0}(\$ 100$ in 6 years $)=(0.6)(0.9)^{6}(100)=31.89$ and $U_{0}(\$ 200$ in 8 years $)=(0.6)(0.9)^{8}(200)=51.66$. Thus she chooses to get $\$ 200$ in 8 years.
(e) $U_{6}(\$ 100$ now $)=100$ and $U_{6}(\$ 200$ in 2 years $)=(0.6)(0.9)^{2}(200)=97.2$. Thus she will change her mind and choose $\$ 100$ right away.
(f) No, because she changes her initial plan after 6 years.
3. (a) With the Borda count and sincere voting x gets 22 points, a gets $17, b$ gets 16 and c gets 15. Thus the social ranking is

$$
\begin{aligned}
& x \\
& a \\
& b \\
& c
\end{aligned}
$$

If, after the election, x drops out then the next best candidate will be chosen, that is candidate a.
(b) Eliminating x from the above profile we have:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
c	a	b	c	a	b	c
b	c	a	b	c	a	b
a	b	c	a	b	c	a

and using the Borda count with this profile we have that a gets 13 points, b gets 14 and c gets 15 . Thus the social ranking becomes
c
b
a
that is, a complete reversal of the previous one! The winner is now c, who was the lowest ranked candidate before!
4. (a) When the range of the SCF has only two alternatives, plurality voting satisfies Unanimity, Non-dictatorship and Non-manipulability.
(b)

2's $a b c$ acb bac bca $c a b$ cba						$c b a$							$c b a$
	a	a	a	a	a	a		a	a	a	a	a	a
	a	a	a	a	a	a		a	a	a	a	a	a
	a	a	b	b	b	b		a	a	b	b	b	b
	a	a	b	b	b	b		a	a	b	b	b	b
	a	a	c	c	c	c		a	a	c	c	c	c
	a	a	c	c	c	c		a	a	c	c	c	c
3 reports abc							3 reports acb						
2's acb bac bca cab cba		$a c b$	bac	$b c a$	$c a b$	$c b a$				$b a c$	$b c a$	$c a b$	$c b a$
	a	a	b	b	a	a		a	a	b	b	a	a
	a	a	b	b	a	a		a	a	b	b	a	a
	b	b	b	b	b	b		b	b	b	b	b	b
	b	b	b	b	b	b		b	b	b	b	b	b
	c	c	b	b	c	c		c	c	b	b	c	c
	c	c	b	b	c	c		c	c	b	b	c	c
3 reports bac								3 reports bca					
1's \downarrow $a b c$ $a c b$ bac bca cab cba	$a b c$	$a c b$	bac	$b c a$	$c a b$	$c b a$		$a b c$	$a c b$	$b a c$	$b c a$	$c a b$	$c b a$
	a	a	a	a	c	c		a	a	a	a	c	c
	a	a	a	a	c	c		a	a	a	a	c	c
	b	b	b	b	c	c		b	b	b	b	c	c
	b	b	b	b	c	c		b	b	b	b	c	c
	c	c	c	c	c	c		c	c	c	c	c	c
	c	c	c	c	c	c		c	c	c	c	c	c
	3 reports cab							3 reports cba					

This SCF satisfies Freedom of Expression, Unanimity and Non-dictatorship but violates Non-manipulability.

