
ECN 106 : Decision MakingProfessor Giacomo BonannoWINTER 2024 - THIRD MIDTERM EXAM:ANSWERS for VERSION 2

1. Let M = 90, F = 12, p = 23, b = 40, β = 0.5 and δ = 0.9

(a) It is given by the solution to $\beta \delta M = \beta \delta (M - F - p) + \beta \delta^2 b$ which is p = 24.

- (**b**) It is given by the solution to $M F = M F p + \beta \delta b$ which is p = 18.
- (c) $U_0(A:not join) = \beta \,\delta M = 40.5$, $U_0(B: join and no exercise) = \beta \,\delta (M F) = 35.1$, $U_0(C: join and exercise) = \beta \,\delta (M - F - p) + \beta \,\delta^2 b = 42.3$. Thus your ranking is $C \succ A \succ B$ and your most preferred plan is to join and exercise.
- (d) $U_1(D: no \ exercise) = M F = 78$, $U_1(E: \ exercise) = M F p + \beta \,\delta b = 76$. Thus your ranking is $D \succ E$ and you prefer not to go to the gym.
- (e) No, because at date 0 you would plan to join and exercise and then at date 1, when you are a member, you prefer not to go to the gym.
- (f) The tree is as follows and the backward-induction solution is shown by double edges. Here M = 90, F = 12, p = 23, b = 40, $\beta = 0.5$ and $\delta = 0.9$.

- - (a) Since act *a* is strictly dominated by act *c*, we only need to compute the expected utility of *b* and the expected utility of *c*. $EU(b) = \frac{1}{15}6 + \frac{5}{15}2 + \frac{3}{15}4 + \frac{5}{15}5 + \frac{1}{15}8 = \frac{61}{15} = 4.067$ and

$$EU(c) = \frac{1}{15}4 + \frac{5}{15}5 + \frac{3}{15}2 + \frac{5}{15}6 + \frac{1}{15}2 = \frac{67}{15} = 4.467$$
. Thus she will choose act c.

- (b) (b.1) If she received information $\{s_1, s_2\}$ then, using Bayes' rule to update the probabilities,
- $EU(b|\{s_1, s_2\}) = \frac{1}{6}6 + \frac{5}{6}2 = \frac{16}{6} = 2.667 \text{ and } EU(c|\{s_1, s_2\}) = \frac{1}{6}4 + \frac{5}{6}5 = \frac{29}{6} = 4.833. \text{ Thus}$ **she would choose act** c. If she received information $\{s_3, s_4, s_5\}$ then, again using Bayes' rule, $EU(b|\{s_3, s_4, s_5\}) = \frac{3}{9}4 + \frac{5}{9}5 + \frac{1}{9}8 = \frac{45}{9} = 5$ and $EU(c|\{s_3, s_4, s_5\}) = \frac{3}{9}2 + \frac{5}{9}6 + \frac{1}{9}2 = \frac{38}{9} = 4.22. \text{ Thus she would choose act } b.$ (**b.2**) Her expected utility is $\frac{6}{15}\frac{29}{6} + \frac{9}{15}\frac{45}{9} = \frac{74}{15} = 4.933$ (**c**) It is $\frac{74}{15} - \frac{67}{15} = \frac{7}{15} = 0.467.$