ECN 106 : Decision Making
 Professor Giacomo Bonanno
 WINTER 2024 - THIRD MIDTERM EXAM: ANSWERS for VERSION 2

1. Let $\mathrm{M}=90, \mathrm{~F}=12, \mathrm{p}=23, \mathrm{~b}=40, \beta=0.5$ and $\delta=0.9$
(a) It is given by the solution to $\beta \delta M=\beta \delta(M-F-p)+\beta \delta^{2} b$ which is $p=24$.
(b) It is given by the solution to $M-F=M-F-p+\beta \delta b$ which is $p=18$.
(c) $U_{0}(A:$ not join $)=\beta \delta M=40.5, U_{0}(B:$ join and no exercise $)=\beta \delta(M-F)=35.1$, $U_{0}(C$: join and exercise $)=\beta \delta(M-F-p)+\beta \delta^{2} b=42.3$. Thus your ranking is $C \succ A \succ B$ and your most preferred plan is to join and exercise.
(d) $U_{1}(D$: no exercise $)=M-F=78, U_{1}(E$: exercise $)=M-F-p+\beta \delta b=76$. Thus your ranking is $D \succ E$ and you prefer not to go to the gym.
(e) No, because at date 0 you would plan to join and exercise and then at date 1 , when you are a member, you prefer not to go to the gym.
(f) The tree is as follows and the backward-induction solution is shown by double edges. Here $\mathrm{M}=90, \mathrm{~F}=12, \mathrm{p}=23, \mathrm{~b}=40, \beta=0.5$ and $\delta=0.9$.

probability	$\frac{1}{15}$	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{3}$	$\frac{1}{15}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}

2. First convert the outcomes into utilities:

act \downarrow					
a	3	4	1	5	1
b	6	2	4	5	8
c	4	5	2	6	2

(a) Since act a is strictly dominated by act c, we only need to compute the expected utility of b and the expected utility of $c . E U(b)=\frac{1}{15} 6+\frac{5}{15} 2+\frac{3}{15} 4+\frac{5}{15} 5+\frac{1}{15} 8=\frac{61}{15}=4.067$ and $E U(c)=\frac{1}{15} 4+\frac{5}{15} 5+\frac{3}{15} 2+\frac{5}{15} 6+\frac{1}{15} 2=\frac{67}{15}=4.467$. Thus she will choose act c.
(b) (b.1) If she received information $\left\{s_{1}, s_{2}\right\}$ then, using Bayes' rule to update the probabilities, $E U\left(b \mid\left\{s_{1}, s_{2}\right\}\right)=\frac{1}{6} 6+\frac{5}{6} 2=\frac{16}{6}=2.667$ and $E U\left(c \mid\left\{s_{1}, s_{2}\right\}\right)=\frac{1}{6} 4+\frac{5}{6} 5=\frac{29}{6}=4.833$. Thus she would choose act \boldsymbol{c}. If she received information $\left\{s_{3}, s_{4}, s_{5}\right\}$ then, again using Bayes' rule, $E U\left(b \mid\left\{s_{3}, s_{4}, s_{5}\right\}\right)=\frac{3}{9} 4+\frac{5}{9} 5+\frac{1}{9} 8=\frac{45}{9}=5$ and $E U\left(c \mid\left\{s_{3}, s_{4}, s_{5}\right\}\right)=\frac{3}{9} 2+\frac{5}{9} 6+\frac{1}{9} 2=\frac{38}{9}=4.22$. Thus she would choose act \boldsymbol{b}.
(b.2) Her expected utility is $\frac{6}{15} \frac{29}{6}+\frac{9}{15} \frac{45}{9}=\frac{74}{15}=4.933$
(c) It is $\frac{74}{15}-\frac{67}{15}=\frac{7}{15}=0.467$.

