$\begin{array}{llllll}\text { probability } & \frac{1}{12} & \frac{1}{6} & \frac{1}{3} & \frac{1}{4} & \frac{1}{6}\end{array}$

$$
\text { state } \rightarrow \quad s_{1} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{5}
$$

1. First convert the outcomes into utilities: act \downarrow

a		3	4	1	8
b	6	2	4	5	8
c	2	3	0	7	5

(a) Since act c is strictly dominated by act a, we only need to compute the expected utility of a and the expected utility of $b . E U(a)=\frac{1}{12} 3+\frac{2}{12} 4+\frac{4}{12} 1+\frac{3}{12} 8+\frac{2}{12} 6=\frac{51}{12}=4.25$ and $E U(b)=\frac{1}{12} 6+\frac{2}{12} 2+\frac{4}{12} 4+\frac{3}{12} 5+\frac{2}{12} 8=\frac{57}{12}=4.75$. Thus she will choose act b.
(b) (b.1) If she received information $\left\{s_{1}, s_{2}\right\}$ then, using Bayes' rule to update the probabilities, $E U\left(a \mid\left\{s_{1}, s_{2}\right\}\right)=\frac{1}{3} 3+\frac{2}{3} 4=\frac{11}{3}=3.67$ and $E U\left(b \mid\left\{s_{1}, s_{2}\right\}\right)=\frac{1}{3} 6+\frac{2}{3} 2=\frac{10}{3}=3.33$. Thus she would choose act \boldsymbol{a}. If she received information $\left\{s_{3}, s_{4}, s_{5}\right\}$ then, again using Bayes' rule, $E U\left(a \mid\left\{s_{3}, s_{4}, s_{5}\right\}\right)=\frac{4}{9} 1+\frac{3}{9} 8+\frac{2}{9} 6=\frac{40}{9}=4.44$ and $E U\left(b \mid\left\{s_{3}, s_{4}, s_{5}\right\}\right)=\frac{4}{9} 4+\frac{3}{9} 5+\frac{2}{9} 8=\frac{47}{9}=5.22$. Thus she would choose act \boldsymbol{b}.
(b.2) Her expected utility is $\frac{3}{12} \frac{11}{3}+\frac{9}{12} \frac{47}{9}=\frac{58}{12}=4.83$
(c) It is $\frac{58}{12}-\frac{57}{12}=\frac{1}{12}=0.083$
2. (a) It is given by the solution to $(0.6)(0.9) 100=(0.6)(0.9)(100-10-p)+(0.6)(0.9)^{2} 40$ which is $p=26$.
(b) It is given by the solution to $100-10=100-10-p+(0.6)(0.9) 40$ which is $p=21.6$
(c) $U_{0}(A$: not join $)=(0.6)(0.9) 100=54, U_{0}(B$: join and no exercise $)=(0.6)(0.9)(100-10)=$ 48.6, $U_{0}(C$: join and exercise $)=(0.6)(0.9)(100-10-23)+(0.6)(0.9)^{2} 40=55.62$. Thus your ranking is $C \succ A \succ B$ and your most preferred plan is to join and exercise.
(d) $U_{1}(D$: no exercise $)=M-F=90, U_{1}(E$: exercise $)=M-F-p+\beta \delta b=88.6$. Thus your ranking is $D \succ E$ and you prefer not to go to the gym.
(e) No, because at date 0 you would plan to join and exercise and then at date 1 , when you are a member, you prefer not to go to the gym.
(f) The tree is as follows and the backward-induction solution is shown by double edges. Here $\mathrm{M}=$ $100, \mathrm{~F}=10, \mathrm{p}=23, \mathrm{~b}=40, \beta=0.6$ and $\delta=0.9$.

