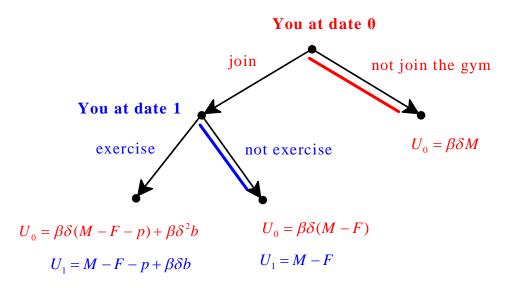
ECN 106 : Decision Making Professor Giacomo Bonanno WINTER 2024 - THIRD MIDTERM EXAM: ANSWERS for VERSION 1

1. First convert the outcomes into utilities:	probability	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{6}$	
	state \rightarrow	S_1	s_2	<i>s</i> ₃	S_4	S_5	
	act↓						
	а	3	4	1	8	6	
	b	6	2	4	5	8	
	С	2	3	0	7	5	

(a) Since act *c* is strictly dominated by act *a*, we only need to compute the expected utility of *a* and the expected utility of *b*. $EU(a) = \frac{1}{12}3 + \frac{2}{12}4 + \frac{4}{12}1 + \frac{3}{12}8 + \frac{2}{12}6 = \frac{51}{12} = 4.25$ and

$$EU(b) = \frac{1}{12}6 + \frac{2}{12}2 + \frac{4}{12}4 + \frac{3}{12}5 + \frac{2}{12}8 = \frac{57}{12} = 4.75$$
. Thus she will choose act *b*.


(b) (b.1) If she received information $\{s_1, s_2\}$ then, using Bayes' rule to update the probabilities,

$$EU(a | \{s_1, s_2\}) = \frac{1}{3}3 + \frac{2}{3}4 = \frac{11}{3} = 3.67$$
 and $EU(b | \{s_1, s_2\}) = \frac{1}{3}6 + \frac{2}{3}2 = \frac{10}{3} = 3.33$. Thus she

would choose act *a*. If she received information $\{s_3, s_4, s_5\}$ then, again using Bayes' rule,

- $EU\left(a \mid \{s_3, s_4, s_5\}\right) = \frac{4}{9}1 + \frac{3}{9}8 + \frac{2}{9}6 = \frac{40}{9} = 4.44 \text{ and}$ $EU\left(b \mid \{s_3, s_4, s_5\}\right) = \frac{4}{9}4 + \frac{3}{9}5 + \frac{2}{9}8 = \frac{47}{9} = 5.22. \text{ Thus she would choose act } b.$ (b.2) Her expected utility is $\frac{3}{12}\frac{11}{3} + \frac{9}{12}\frac{47}{9} = \frac{58}{12} = 4.83$ (c) It is $\frac{58}{12} - \frac{57}{12} = \frac{1}{12} = 0.083$
- **2.** (a) It is given by the solution to $(0.6)(0.9)100 = (0.6)(0.9)(100 10 p) + (0.6)(0.9)^2 40$ which is p = 26.
 - (b) It is given by the solution to 100-10 = 100-10 p + (0.6)(0.9)40 which is p = 21.6
 - (c) $U_0(A:not join) = (0.6)(0.9)100 = 54$, $U_0(B: join and no exercise) = (0.6)(0.9)(100-10) = 48.6$, $U_0(C: join and exercise) = (0.6)(0.9)(100-10-23) + (0.6)(0.9)^2 40 = 55.62$. Thus your ranking is C > A > B and your most preferred plan is to join and exercise.
 - (d) $U_1(D: no \ exercise) = M F = 90$, $U_1(E: \ exercise) = M F p + \beta \,\delta b = 88.6$. Thus your ranking is $D \succ E$ and you prefer not to go to the gym.
 - (e) No, because at date 0 you would plan to join and exercise and then at date 1, when you are a member, you prefer not to go to the gym.

(f) The tree is as follows and the backward-induction solution is shown by double edges. Here M = 100, F = 10, p = 23, b = 40, $\beta = 0.6$ and $\delta = 0.9$.

