ECN 106 : Decision Making Professor Giacomo Bonanno
 WINTER 2024 - SECOND MIDTERM EXAM: ANSWERS for VERSION 2

1. (a) Putting the money in the checking account corresponds to the lottery $\binom{\$ 1,500}{1}$, whose expected value is 1,500 , while putting it in the mutual fund corresponds to the lottery $\left(\begin{array}{ccc}\$ 2,000 & \$ 1,700 & \$ 1,100 \\ \frac{8}{100} & \frac{74}{100} & \frac{18}{100}\end{array}\right)$ whose expected value is 1,616 . Hence Jimmy would be risk averse.
(b) The possible levels of wealth are: $\$ 2,000, \$ 1,700, \$ 1,500$ and $\$ 1,100$. Assign utility 1 to $\$ 2,000$ and zero to $\$ 1,100$. Since $\underbrace{\binom{\$ 1,700}{1}}_{C D} \sim \underbrace{\left(\begin{array}{cc}\$ 2,000 & \$ 1,100 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)}_{\text {starup }}$ the utility of $\$ 1,700$ is $\frac{1}{2} 1+\frac{1}{2} 0=\frac{1}{2}=0.5$. Finally, since $\underbrace{\binom{\$ 1,500}{1}}_{\text {Checking }} \sim \underbrace{\left(\begin{array}{cc}\$ 1,700 & \$ 1,100 \\ \frac{92}{100} & \frac{8}{100}\end{array}\right)}_{\text {foreign venture }}$, the utility of $\$ 1,500$ is $\frac{92}{100} 0.5+\frac{8}{100} 0=0.46$. Hence Jimmy's utility function is $\begin{array}{cccc}\$ 2,000 & \$ 1,700 & \$ 1,500 & \$ 1,100 \\ 1 & 0.5 & 0.46 & 0\end{array}$.
(c) $\mathbb{E}[U($ checking $)]=0.46, \quad \mathbb{E}[U($ mutual $)]=\frac{8}{100} 1+\frac{74}{100} 0.5+\frac{18}{100} 0=0.45 \quad \mathbb{E}[U(C D)]=0.5$, $\mathbb{E}[U($ startup $)]=0.5(1)+0.5(0)=0.5, \quad \mathbb{E}[U($ foreign $)]=\frac{92}{100} 0.5+\frac{8}{100} 0=0.46$.
(d) For a risk neutral person we compute expected values. $\mathbb{E}[$ checking $]=1,500$, $\mathbb{E}[$ mutual $]=\frac{8}{100} 2,000+\frac{74}{100} 1,700+\frac{18}{100} 1,100=1,616, \mathbb{E}[C D]=1,700$, $\mathbb{E}[$ startup $]=0.5(2,000)+0.5(1,100)=1,550, \quad \mathbb{E}[$ foreign $]=\frac{92}{100} 1,700+\frac{8}{100} 1,100=1,652$.
Thus the ranking is $C D \succ$ foreign \succ mutual \succ startup \succ checking .
2. (a) First we need to convert outcomes into utilities:

	s_{1}	s_{2}	s_{3}	s_{4}
a	16	36	16	81
b	25	169	9	64
c	121	1	100	0

	s_{1}	s_{2}	s_{3}	s_{4}
a	105	133	84	0
a	106	0	91	17
b	96			
c	0	168	0	81

(b) The MinMax Regret solution is: b.
(c) (c.1) $H\left(a, \frac{2}{5}\right)=16 \times \frac{2}{5}+81 \times \frac{3}{5}=55$.
(c.2) $H\left(b, \frac{2}{5}\right)=9 \times \frac{2}{5}+169 \times \frac{3}{5}=105$.
(c.1) $H\left(c, \frac{2}{5}\right)=0 \times \frac{2}{5}+121 \times \frac{3}{5}=\frac{363}{5}=72.6$.
(d) $\mathbb{E}[U(a)]=\frac{16+36+16+81}{4}=\frac{149}{4}, \quad \mathbb{E}[U(b)]=\frac{25+169+9+64}{4}=\frac{267}{4}$,
$\mathbb{E}[U(c)]=\frac{121+1+100+0}{4}=\frac{222}{4}$. Thus the act that maximizes expected utility is b.
3. (a) The information is (1) $P(D)=0.06$ (from which we deduce that $P(\neg D)=0.94$), (2) $P(-\mid D)=0.01$ (from which we deduce that $P(+\mid D)=0.99$) and (3) $P(+\mid \neg D)=0.05$. Now, $P(+)=P(+\mid D) P(D)+P(+\mid \neg D) P(\neg D)=0.99(0.06)+0.05(0.94)=0.1064=10.64 \%$.
(b) 6% of 5,000 is 300 ; thus 300 have the disease and 4,700 don't. Of the 300 who have the disease, 1%, that is, 3 give a negative result; thus the remaining 297 give a positive result. Of the 4,700 who don't have the disease, 5% (that is, 235) give a positive result. Thus the table is as follows:

	positive blood test	negative blood test	Total
have the disease	297	3	300
don't have the disease	235	4,465	4,700
Total	532	4,468	

(c) $\frac{297}{532}=0.5583=55.83 \%$.

