## ECN 106 : Decision Making Professor Giacomo Bonanno WINTER 2024 - FIRST MIDTERM EXAM: ANSWERS for VERSION 2

1. (a) (a.1) $e$ strictly dominates $d, f$ strictly dominates $d$ and $e$.
(a.2) The Maximin solution is $f$.
(b) (b.1) $(d, e): e$ strictly dominates $d$.
$(d, f): f$ strictly dominates $d$
$(e, f)$ : it is neither the case that $e$ dominates $f$ (because $z_{12} \succ z_{8}$ and thus $f$ is better than $e$ in state $s_{4}$ ) nor the case that $f$ dominates $e$ (because $z_{5} \succ z_{9}$ and thus $e$ is better than $f$ in state $s_{1}$ ).
(b.2) The Maximin solution is $e$.
(c) $(\mathbf{c} .1)(d, e): d$ weakly dominates $e$.
( $d, f$ ): it is neither the case that $d$ dominates $f$ (because $z_{9} \succ z_{1}$ and thus $f$ is better than $d$ in state $s_{1}$ ) nor the case that $f$ dominates $d$ (because $z_{2} \succ z_{10}$ and thus $d$ is better than $f$ in state $s_{2}$ ).
$(e, f)$ : it is neither the case that $e$ dominates $f$ (because $z_{9} \succ z_{5}$ and thus $f$ is better than $e$ in state $s_{1}$ ) nor the case that $f$ dominates $e$ (because $z_{6} \succ z_{10}$ and thus $e$ is better than $f$ in state $s_{2}$ ).
(c.2) The Maximin solution is $d$.
2. The expected value of the lottery $\left(\begin{array}{cc}25,000 & 64,000 \\ \frac{1}{5} & \frac{4}{5}\end{array}\right)$ is 56,200 ; the expected value of the lottery $\left(\begin{array}{cc}9,000 & 81,000 \\ \frac{1}{4} & \frac{3}{4}\end{array}\right)$ is 63,000 and the expected value of the lottery $\left(\begin{array}{cc}16,000 & 100,000 \\ \frac{3}{4} & \frac{1}{4}\end{array}\right)$ is 37,000 . Thus the decision tree can be reduced as follows:


The expected value of the lottery $\left(\begin{array}{cc}49,000 & 63,000 \\ \frac{3}{7} & \frac{4}{7}\end{array}\right)$ is 57,000 . Thus the decision maker will choose $S$. The full backward-induction solution is $(S, A, E)$.
3. (a) Being risk neutral, Bill ranks lotteries according to their expected value. The expected value of lottery $B$ is 120 . Thus he is indifferent between $A$ and $B$ if and only if the expected value of $A$ is 120 , that is, if and only if $60 p+140(1-p)=120$; thus $p=\frac{1}{4}$.
(b) Bill prefers $B$ to $C$ if and only if the expected value of $C$ is less than 120 : $\frac{2}{5} 60+\frac{2}{5} 100+\frac{1}{5} x<120$, that is, if and only if $x<280$.
(c) He will choose $\$ 122$ for sure, since the expected value of $B$ is 120 .
(d) Amy prefers lottery $B$ to $\$ 121$ and prefers $\$ 121$ to $\$ 120$. Thus, by transitivity, she prefers lottery $B$ to $\$ 120$, which is the expected value of $B$. Hence she is risk loving relative to lottery $B$.
4. (a) $R$ is complete.
(b) $R$ is transitive
(c) $\begin{array}{lllll}a & b & c & d & e \\ 2 & 2 & 1 & 4 & 3\end{array}$

