ECN 106 : Decision Making
 Professor Giacomo Bonanno

 WINTER 2024 - FIRST MIDTERM EXAM:
 ANSWERS for VERSION 2

- (a) (a.1) e strictly dominates d, f strictly dominates d and e.
 (a.2) The Maximin solution is f.
 - (b) (b.1) (d,e): e strictly dominates d.
 (d,f): f strictly dominates d
 (e,f): it is neither the case that e dominates f (because z₁₂ ≻ z₈ and thus f is better than e in state s₄) nor the case that f dominates e (because z₅ ≻ z₉ and thus e is better than f in state s₁).
 (b.2) The Maximin solution is e.
 - (c) (c.1) (d,e): d weakly dominates e. (d,f): it is neither the case that d dominates f (because $z_9 \succ z_1$ and thus f is better than d in state s_1) nor the case that f dominates d (because $z_2 \succ z_{10}$ and thus d is better than f in state s_2).

(*e*,*f*): it is neither the case that *e* dominates *f* (because $z_9 \succ z_5$ and thus *f* is better than *e* in state s_1) nor the case that *f* dominates *e* (because $z_6 \succ z_{10}$ and thus *e* is better than *f* in state s_2).

(c.2) The Maximin solution is *d*.

2. The expected value of the lottery $\begin{pmatrix} 25,000 & 64,000 \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$ is 56,200; the expected value of the lottery $\begin{pmatrix} 9,000 & 81,000 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$ is 63,000 and the expected value of the lottery $\begin{pmatrix} 16,000 & 100,000 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ is 37,000. Thus the decision tree can be reduced as follows:

The expected value of the lottery $\begin{pmatrix} 49,000 & 63,000 \\ \frac{3}{7} & \frac{4}{7} \end{pmatrix}$ is 57,000. Thus the decision maker will choose *S*. The full backward-induction solution is (*S*, *A*, *E*).

- **3.** (a) Being risk neutral, Bill ranks lotteries according to their expected value. The expected value of lottery *B* is 120. Thus he is indifferent between *A* and *B* if and only if the expected value of *A* is 120, that is, if and only if 60p+140(1-p)=120; thus $p=\frac{1}{4}$.
 - (b) Bill prefers *B* to *C* if and only if the expected value of *C* is less than 120: $\frac{2}{5}60 + \frac{2}{5}100 + \frac{1}{5}x < 120$, that is, if and only if x < 280.
 - (c) He will choose \$122 for sure, since the expected value of B is 120.
 - (d) Amy prefers lottery *B* to \$121 and prefers \$121 to \$120. Thus, by transitivity, she prefers lottery *B* to \$120, which is the expected value of *B*. Hence she is risk loving relative to lottery *B*.
- **4.** (a) *R* is complete. (b) *R* is transitive (c) $\begin{array}{c} a & b & c & d & e \\ 2 & 2 & 1 & 4 & 3 \end{array}$