1. (a) Being risk neutral, Bill ranks lotteries according to their expected value. The expected value of lottery A is 96 . Thus he is indifferent between A and B if and only if the expected value of B is 96 , that is, if and only if $40 p+120(1-p)=96$; thus $p=\frac{3}{10}$.
(b) Bill prefers A to C if and only if the expected value of C is less than 96 : $\frac{1}{4} 60+\frac{1}{4} 80+\frac{2}{4} x<96$, that is, if and only if $x<122$.
(c) Lottery A since its expected value is greater than 95 .
(d) She prefers $\$ 96$ to $\$ 95$ and $\$ 95$ to A. Thus, by transitivity, she prefers $\$ 96$ (the expected value of A) to A. Hence she is risk averse relative to lottery A.
2. (a) (a.1) $(a, b): b$ weakly dominates a.
(a, c): it is neither the case that a dominates c (because $z_{12} \succ z_{4}$ and thus c is better than a in state s_{4}) nor the case that c dominates a (because $z_{2} \succ z_{10}$ and thus a is better than c in state s_{2}).
$(b, c):$ it is neither the case that b dominates c (because $z_{12} \succ z_{8}$ and thus c is better than b in state s_{4}) nor the case that c dominates b (because $z_{7} \succ z_{11}$ and thus b is better than c in state s_{3}).
(a.2) The Maximin solution is b.
(b) (b.1) (a, b) : it is neither the case that a dominates b (because $z_{5} \succ z_{1}$ and thus b is better than a in state s_{1}) nor the case that b dominates a (because $z_{2} \succ z_{6}$ and thus a is better than b in state s_{2}).
(a, c) : it is neither the case that a dominates c (because $z_{9} \succ z_{1}$ and thus c is better than a in state s_{1}) nor the case that c dominates a (because $z_{2} \succ z_{10}$ and thus a is better than c in state s_{2}).
(b, c): it is neither the case that b dominates c (because $z_{9} \succ z_{5}$ and thus c is better than b in state s_{1}) nor the case that c dominates b (because $z_{8} \succ z_{12}$ and thus b is better than c in state s_{4}).
(b.2) The Maximin solution is a.
(c) (c.1) a strictly dominates b and c, b strictly dominates c.
(c.2) The Maximin solution is a.
3. The expected value of the lottery $\left(\begin{array}{cc}25,000 & 64,000 \\ \frac{2}{5} & \frac{3}{5}\end{array}\right)$ is 48,400 ; the expected value of the lottery $\left(\begin{array}{cc}9,000 & 81,000 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ is 45,000 and the expected value of the lottery $\left(\begin{array}{cc}16,000 & 100,000 \\ \frac{3}{5} & \frac{2}{5}\end{array}\right)$ is 49,600 . Thus the decision tree can be reduced as follows:

The expected value of the lottery $\left(\begin{array}{cc}45,000 & 49,600 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is $48,066.67$. Thus the decision maker will choose R. The full backward-induction solution is (R, A, A).
4. (a) R is complete.
(b) R is transitive
(c) $\begin{array}{lllll}a & b & c & d & e \\ 0 & 2 & 3 & 1 & 2\end{array}$

