Department of Economics, University of California, Davis Ecn 106 – Decision Making – Professor Giacomo Bonanno

HOMEWORK # 1 (for due date see web page)

Consider the following decision problem:

states \rightarrow	S_1	S_2	<i>s</i> ₃	S_4	S_5	<i>s</i> ₆
acts ↓						
a_1	Z_1	Z_2	<i>Z</i> ₃	Z_4	Z_5	Z ₆
a_2	Z_7	Z_8	Z_9	<i>Z</i> ₁₀	<i>Z</i> ₁₁	<i>Z</i> ₁₂
<i>a</i> ₃	<i>Z</i> ₁₃	<i>Z</i> ₁₄	Z_{15}	Z_{16}	Z ₁₇	Z ₁₈

The agent's ranking of the outcomes is as follows (where \succ means 'better than' and \sim means 'just as good as'):

 $z_{15} \sim z_9 \succ z_{16} \sim z_{13} \sim z_7 \succ z_{10} \succ z_5 \succ z_{17} \sim z_6 \sim z_2 \succ z_{14} \succ z_8 \sim z_{18} \sim z_1 \succ z_3 \succ z_{11} \sim z_{12} \succ z_4$

- (a) Represent the ranking by means of a utility function with values in the set {1,2,...,9,10}
- (b) Re-write the decision problem replacing outcomes with utilities.
- (c) For every two acts, explain whether one dominates the other (and if so, state whether it is strict or weak dominance).
- (d) Find the Maximin solution.
- (e) Suppose now that, before deciding what to do, the agent learns that act a_3 is no longer available and an expert informs the agent that, for sure, the state is not any of the odd-numbered ones (that is, the true state is one of s_2, s_4, s_6). Find the Maximin solution of this reduced decision problem.