HOMEWORK \# 3 ANSWERS

(a)Since Ann is risk neutral, we can take her utility of money function to be the identity function: $V(m)=m$, so that the expected utility of a lottery coincides with the expected value. Thus the expected value of choice A is $\frac{1}{6} 25+\frac{3}{6} 100+\frac{2}{6} 16=\frac{357}{6}=59.5$.
The expected value of choice B is $\frac{1}{6} 64+\frac{3}{6} 81+\frac{2}{6} 9=\frac{325}{6}=54.167$.
The expected value of choice C is $\frac{1}{6} 4+\frac{3}{6} 36+\frac{2}{6} 49=\frac{210}{6}=35$.
Hence Ann will choose A.
(b)Since Ann is risk neutral we know that the identity function represents her preferences:

basic outcome	\$100	\$81	\$64	\$49	\$36	\$25	\$16	,	+	To normalize first	
utility	100	81	64	49	36	25	16	9	4		
subtract 4 from each utility:											
basic outcome	\$100	\$81	\$64	\$49	\$36	\$25	\$16	\$9	\$4		
utility	96	77	60	45	32	21	12	5	0	en divide by 96 :	
basic outcome	\$100	\$81		64	\$49		36	\$25		\$16	\$9 \$4
utility	1	77/9		6/96	45/9		$2 / 96$	21/9		12/96	5/96

(c) For Bob, the expected utility of choice A is $\frac{1}{6} 5+\frac{3}{6} 10+\frac{2}{6} 4=\frac{43}{6}=7.167$.

The expected utility of choice B is $\frac{1}{6} 8+\frac{3}{6} 9+\frac{2}{6} 3=\frac{41}{6}=6.833$.
The expected utility of choice C is $\frac{1}{6} 2+\frac{3}{6} 6+\frac{2}{6} 7=\frac{34}{6}=5.667$.
Thus Bob, too, will choose A.
(d)With perfect information Ann will choose B if she learns that the state is s_{1}, she will choose A if she learns that the state is s_{2} and will choose C if she learns that the state is s_{3}. Thus the maximum price she is willing to pay for perfect information is given by the solution to $\frac{1}{6} 64+\frac{3}{6} 100+\frac{2}{6} 49-p=\frac{357}{6}$ which is $p=\frac{35}{2}=17.5$.
(e) Bob's expected utility if he pays $\$ 19$ for perfect information is $\frac{1}{6} \sqrt{64-19}+\frac{3}{6} \sqrt{100-19}+\frac{2}{6} \sqrt{49-19}=7.44$ which is higher than the expected utility of choosing A without information, thus he will decide to pay the expert.
(f) Ann's expected utility of acquiring perfect information at price $\$ 19$ is
$\frac{1}{6} 64+\frac{3}{6} 100+\frac{2}{6} 49-19=58$. Thus her expected utility changes from 59.5 to 58 : a change of -1.5 (not surprising, since the maximum price she is willing to pay is $\$ 17.5$).
(g) $\frac{1}{6} \sqrt{64-p}+\frac{3}{6} \sqrt{100-p}+\frac{2}{6} \sqrt{49-p}=\frac{43}{6}$ (recall that $\frac{43}{6}=7.167$ is the expected utility of choosing A without information). [In case you are interested, the solution is $p=\$ 22.83$.

