HOMEWORK \# 2 ANSWERS

(a) Since the expected value of $\left(\begin{array}{ccc}\$ 320 & \$ 80 & \$ 0 \\ 0.3 & 0.2 & 0.5\end{array}\right)$ is $0.3(320)+0.2(80)+0.5(0)=112$ and she is risk neutral, she prefers U to both M and B. The expected value of $\left(\begin{array}{cc}\$ 320 & \$ 0 \\ p & 1-p\end{array}\right)$ is $\$ 320 p$. Since she chooses U, it must be that $320 p \leq 260$, that is, $p \leq \frac{260}{320}=0.813$. Furthermore, since she chooses A and then U it must be that $X \leq 260$.
(b.1) The expected value of $\left(\begin{array}{cc}\$ 320 & \$ 0 \\ 0.9 & 0.1\end{array}\right)$ is $\$ 288$. If he were risk neutral he would prefer T to U. Thus he is risk averse.
(b.2) Set $U(320)=1$ and $U(0)=0$. Since he is indifferent between $\binom{\$ 260}{1}$ and $\left(\begin{array}{cc}\$ 320 & \$ 0 \\ 0.9 & 0.1\end{array}\right)$, $U(260)=0.9$. Since he is indifferent between $\binom{\$ 80}{1}$ and $\left(\begin{array}{ccc}\$ 320 & \$ 80 & \$ 0 \\ 0.3 & 0.2 & 0.5\end{array}\right)$, $U(80)=0.3(1)+0.1 U(80)+0.6(0)$, so that $U(80)=0.375$.
(b.3) Either U or T (since they both have an expected utility of 0.9 , while the other two have an expected utility of 0.375).
(c) The expected utility of $\left(\begin{array}{cccc}\$ 320 & \$ 260 & \$ 80 & \$ 0 \\ 0.1 & 0.1 & 0.3 & 0.5\end{array}\right)$ is $0.1(1)+0.1(0.9)+0.3(0.375)+0.5(0)=0.303$. Thus he will choose to get $\$ 80$ for sure, since $U(80)=0.375$.

