Through any point in the wealth space go two indifference curves: a less steep one corresponding to effort and a steeper one corresponding to no effort.

No-effort indifference curves:

Next the no-effort indifference curves:

Page $\mathbf{2}$ of $\mathbf{8}$

Indifference curves that go through the NI point:

Wealth in bad state

Assume that

$$
\bar{u}>\hat{u}
$$

under NI agent chooses effort

$$
\tilde{u}>\bar{u}
$$

\bar{u} is the reservation level of utility

Wealth in

The monopolist will want the consumer to be on the reservation utility locus. But which contract on this locus will it offer?

The monopolist will only
Wealth in good state consider offering either A
 or F

- If monopolist offers F
then consumer chooses no effort and gers uhlily us
- If monopolise offers

A then consumer chooses effort aus Wealth in
bad state
gt utility
\bar{u}

TWO EXAMPLES
Example 1.

$$
W=10,000 \quad L=1,900 \quad p_{n}=\frac{4}{10} \quad p_{e}=\frac{1}{10}
$$

$$
U_{n}(m) \equiv U(m, 0)=\sqrt{m}
$$

$$
\begin{aligned}
& \text { Then } \\
& \left.\mathbb{E}\left[U_{n}(N I)\right]=\frac{4}{10} \sqrt{10,000-1,900}+\frac{6}{10} \sqrt{10,000}=96\right\} \hat{u} \\
& \mathbb{E}\left[U_{e}(N I)\right]=\frac{1}{10}(\sqrt{10,000-1,900}-1)+\frac{9}{10}(\sqrt{10,000}-1)=\underbrace{98}_{\overline{4}}
\end{aligned}
$$

So under no insurance the agent chooses effort

What contract would a monopolist offer? The choice is between A and F.

Wealth in bad state

$$
F=\left(h_{F}, d_{F}=0\right)
$$

Find the premium of contract F. Given by the solution to:

$$
\sqrt{10,000-h}=98 \quad h_{F}=396
$$

Corresponding profits:

$$
\pi(F)=396-\frac{4}{10}(1,900)=-364
$$

Calculate premium and deductible for contract A :

$$
A=\left(h_{A}, d_{A}\right) \quad d_{A}>0
$$

$\frac{4}{10} \sqrt{10,000-h_{A}-d_{A}}+\frac{6}{10} \sqrt{10,000-h_{A}}$ (on the no-effort indifference curve for utility 98) $1\left(\sqrt{10,00-h_{A} d A}\right)=98 \quad P_{n}=\frac{4}{10}$
$\frac{1}{10}\left(\sqrt{10,000-h_{A}-d_{A}}-1\right)+\frac{9}{10}\left(\sqrt{10,000-h_{A}}-1\right)($ on the effort indifference curve for utility 98)
The solution is: $h_{A}=132.89 \quad d_{A}=651.11$

$$
P_{e}=\frac{1}{I_{0}}
$$

Corresponding profits:
$\pi(A)=132.89-\frac{1}{10}(1,900-651.11)=8$
Thus the monopolist will offer

Example 2 ("effort" is a monetary expense).

$$
W=8,000 \quad L=3,000 \quad p_{n}=\frac{1}{8} \quad p_{e}=\frac{1}{10} \quad U(m) \equiv 10 \ln (m)
$$

Cost of "effort": \$50.

$$
\begin{aligned}
& \mathbb{E}\left[U_{n}(N I)\right]=\frac{1}{8} 10 \ln (8,000-3,000)+\frac{7}{8} 10 \ln (8,000)=89.284 \\
& \mathbb{E}\left[U_{e}(N I)\right]=\frac{1}{10} 10 \ln (8,000-3,000-50)+\frac{9}{10} 10 \ln (8,000-50)= \\
& \text { So under no insurance the agent chooses effort }
\end{aligned}
$$

What contract would a monopolist offer? The choice is between A and F :

Find the premium of contract F. Given by the solution to:

$$
10 \ln (8,000-h)=89.335 \quad h_{F}=417.87
$$

Corresponding profits:

$$
\pi(F)=417.87-\frac{1}{8}(3,000)=42.87
$$

Calculate premium and deductible of contract A.
Given by the solution to:

$$
\begin{aligned}
& \frac{7}{8} 10 \ln \left(8,000-h_{A}\right)+\frac{1}{8} 10 \ln \left(8,000-h_{A}-d_{A}\right)=89.335 \\
& \text { (on the no-effort indifference curve for utility 89.335) } \\
& \frac{9}{10} 10 \ln \left(8,000-h_{A}-50\right)+\frac{1}{10} 10 \ln \left(8,000-h_{A}-d_{A}-30\right)=89.335 \\
& \text { (on the effort indifference curve for utility 89.335) }
\end{aligned}
$$

The solution is: $h_{A}=163.69 \quad d_{A}=1,817.05$
Corresponding profits:

$$
\pi(A)=163.69-\frac{1}{10}(3,000-1,817.05)=45.395
$$

So $\Pi(A)>\Pi(F)$ and the monopolist will offer the partial-insurance contract A

