Adverse selection in insurance markets

Two types of customers, H and L, identical in terms of initial wealth W, potential loss L and vNM utility-of-money function U, but with different

probability of loss: $p_H > p_L$.

Slope of indifference curves at point (w_1, w_2)

Page 1 of 10

 h_{H}^{*} maximum premium that the *H* people are willing to pay for full insurance h_{L}^{*} maximum premium that the *L* people are willing to pay for full insurance:

Let q_H be the fraction of *H* types in the population $0 < q_H < 1$

If $\mathbb{E}[U_L(C)] \ge \mathbb{E}[U_L(NI)]$ then $\mathbb{E}[U_H(C)] \ge \mathbb{E}[U_H(NI)]$

Case 1: MONOPOLY

OPTION 1. Offer only one contract, which is attractive only to the H type.

 $C_1 = ($,) Profits: $\pi_1^* =$

OPTION 2. Offer only one contract, which is attractive to both types. **Not optimal to offer full insurance**

Best contract under Option 2:

$$\pi_{2}^{*} =$$

OPTION 3: Offer two contracts, $C_H = (h_H, d_H)$, targeted to the *H* type $C_L = (h_L, d_L)$ targeted to the *L* type.

expected utility for L-type from C_L : $EU_L[C_L] =$ expected utility for L-type from C_H : $EU_L[C_H] =$ expected utility for H-type from C_L : $EU_H[C_L] =$ expected utility for H-type from C_H : $EU_H[C_H] =$ expected utility for L-type from NI: $EU_L[NI] =$ expected utility for L-type from NI: $EU_L[NI] =$ Monopolist's problem is to

$$\begin{split} & \underset{h_{H}, D_{H}, h_{L}, D_{L}}{Max} \pi_{3} = q_{H}N \left[h_{H} - p_{H}(x - D_{H}) \right] + (1 - q_{H})N \left[h_{L} - p_{L}(x - D_{L}) \right] \\ & \text{subject to} \\ & (IR_{L}) \\ & (IC_{L}) \\ & (IC_{H}) \\ & (IC_{H}) \end{split}$$

 (IR_{H}) follows from (IR_{L}) and (IC_{H})

Thus, the problem can be reduced to

$$\begin{split} & \underset{h_{H}, D_{H}, h_{L}, D_{L}}{\underset{h_{L}, D_{L}}{M_{3}}} \pi_{3} = q_{H}N \left[h_{H} - p_{H}(x - D_{H}) \right] + (1 - q_{H})N \left[h_{L} - p_{L}(x - D_{L}) \right] \\ & \text{subject to} \\ & (IR_{L}) \quad EU_{L}[C_{L}] \ge EU_{L}[NI] \\ & (IC_{L}) \quad EU_{L}[C_{L}] \ge EU_{L}[C_{H}] \\ & (IC_{H}) \quad EU_{H}[C_{H}] \ge EU_{H}[C_{L}] \end{split}$$

 (IC_{H}) must be satisfied as an equality.

So C_H and C_L be on the same indifference curve for the H type. On this indifference curve, contract C_H cannot be above contract

So it must be:

C_H must be a full insurance contract

(IR_L) must be satisfied as an equality.

(IC_L) is not binding: it is always satisfied as a strict inequality.

Page 10 of 10