Probability and conditional probability

Finite set of *states* $S = \{s_1, s_2, ..., s_n\}$. Subsets of *S* are called *events*.

Probability distribution over *S*:

Denote the probability of state s by p(s).

Given an event $E \subseteq S$, the probability of *E* is:

$$P(E) = \begin{cases} & \text{if} \\ & &$$

Denote by $\neg E$ the complement of $E \subseteq S$.

Example

 $S = \{a, b, c, d, e, f, g\} \qquad A = \{a, c, d, e\} \qquad B = \{a, e, g\}$ $\neg A = \qquad \neg B =$ Given

P(A) =	P(B) =
--------	--------

- $A \cap B = P(A \cap B) =$
- $A \cup B = P(A \cup B) =$

Note: for every two events *E* and *F*:

$$P(E \cup F) =$$

•

We denote by P(E|F) the probability of *E* conditional on *F* and define it as:

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

Continuing the example above where $\begin{array}{c} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{array} \quad A = \{a, c, d, e\} \qquad B = \{a, e, g\}$ $P(A) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} = \frac{8}{14}, \quad P(B) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}, \quad P(A \cap B) = \frac{1}{14} + \frac{6}{14} = \frac{7}{14}$

 $P(A \mid B) =$

$$P(B \mid A) =$$

The conditional probability formula can also be applied to individual states:

$$p(s \mid E) = \begin{cases} & \text{if} \\ & \text{if} \end{cases}$$

We can think of $p(\cdot | E)$ as a probability distribution on the entire set S. Continuing the example above

where
$$S = \{a, b, c, d, e, f, g\}$$
, $A = \{a, c, d, e\}$ and $\begin{bmatrix} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{bmatrix}$ (so that $P(A) = \frac{8}{14}$)
 $a & b & c & d & e & f & g$
 $p(\bullet | A)$:

Shortcut to obtain the revised or updated probabilities:

Initial or prior probabilities. Note that here they all have the same denominator .	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{100} & \frac{70}{100} & \frac{5}{100} & \frac{10}{100} \end{pmatrix} $
Information or conditioning event: $F = \{a, b, d\}$	
STEP 1. Set the probability of every state which is not in <i>F</i> to zero:	$\left(\begin{array}{cccc} a & b & c & d \\ & & 0 & \end{array}\right)$
STEP 2. For the other states write new fractions with the same numerators as before:	$ \begin{pmatrix} a & b & c & d \\ 15 & 70 & 0 & \frac{10}{} \\ & & \end{pmatrix} $
STEP 3. In every denominator put the sum of the numerators: 15+70+10=95. Thus the updated probabilities are:	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{95} & \frac{70}{95} & 0 & \frac{10}{95} \end{pmatrix} $

In the above example, where $\begin{array}{ccccc} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \end{array} \text{ and } A = \{a, c, d, e\}, \text{ to compute } p(\bullet | A)$

Step 1: assign zero probability to states in $\neg A$:

Step 2: keep the same numerators for the states in *A*:

Step 3: since the sum of the numerators is 8, put 8 as the denominator:

а	b	С	d	е	f	g
$\frac{1}{8}$	0	0	$\frac{1}{8}$	$\frac{6}{8}$	0	0

EXAMPLE 2.	Sample space or set of states:	$\{a,b,c,d,e,f\}.$
-------------------	--------------------------------	--------------------

Initial or prior probabilities:	$\begin{pmatrix} a \\ \frac{3}{20} \end{pmatrix}$	$\frac{b}{\frac{3}{10}}$	$\frac{c}{\frac{1}{20}}$	d 0	е 2 5	$\left. \begin{array}{c} f \\ \frac{1}{10} \end{array} \right)$
Information:		<i>F</i> =	$= \{a, b\}$	<i>,d</i> ,	<i>e</i> }	
STEP 0. Rewrite all the probabilities with the same denominator:	a	b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 1. Change the probability of every state which is not in <i>F</i> to zero:		b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 2. Write new fractions which have the same numerators as before:	a	b	с 0	d	е	$\begin{pmatrix} f \\ 0 \end{pmatrix}$
STEP 3 . In every denominator put the sum of the numerators: 3+6+8=17.	$\begin{pmatrix} a \\ \frac{3}{17} \end{pmatrix}$	$\frac{b}{6}$	с 0	d 0	e $\frac{8}{17}$	$\begin{pmatrix} f \\ 0 \end{pmatrix}$

ADVERSE SELECTION Akerlof on market for second-hand cars

Utility-of-money of a potential seller who owns of a car of quality *q*:

 $U(m) = \begin{cases} m + u(q) & \text{if does not sell the car} \\ m & \text{if sells the car} \end{cases}$

Thus, if her initial wealth is W_0 she will sell the car a price p only if:

Utility-of-money of a potential buyer who does not own a car:

 $V(m) = \begin{cases} m & \text{if does not buy a car} \\ m + v(q) & \text{if becomes owner of a car of quality } q \end{cases}$

Thus, if his initial wealth is W_0 he will but a car of quality q at price p only if:

Assume that, for every quality q, v(q) > u(q) > 0

What if there is **asymmetric information**: only the owner knows the quality q?

Quality q	best: A	В	С	D	Ε	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion							
v(q) (seller)	720	630	540	450	360	270	
u(q) (buyer)	800	700	600	500	400	300	

Publicly available information:

Buyer: if a car is offered to me at price *p* should I buy it?

Suppose p = 460

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270

Back to previous example. Suppose that p = 460. Then only qualities D, E, F offered **Step 1**: convert probabilities to a common denominator:

Quality q	best: A	В	С	D	Ε	worst: F
Proportion	$p_A = \frac{3}{28}$	$p_B = \frac{5}{28}$	$p_C = \frac{5}{56}$	$p_D = \frac{3}{14}$	$p_E = \frac{2}{7}$	$p_F = \frac{1}{8}$

Step 2: condition on {D, E, F}

Quality q	best: A	В	С	D	Ε	worst: F
Proportion						

Suppose p = 380

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270

Quality	L	М	H
probability	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
seller's value	900	1,200	1,400
buyer's value	1,020	1,320	1,500

For every price p determine if there is a second-hand market.

All-you-can eat buffet in Davis. Hire a market research firm to find out about demand. Customers of different types. A type of a customer is a pair (r, c) where

- *r* is the maximum price the customer is willing to pay
- *c* is the number of dishes that the customer would consume

Customer type(\$8, 2)(\$8, 2.5)(\$8.50, 2.5)(\$8.50, 3)(\$9, 3)(\$9, 3.5)Proportion $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$ $\frac{1}{8}$ $\frac{7}{24}$

Risk neutral. Cost per dish is \$2.40.

• If you charge \$8 then average consumption

Average cost per customer

Profit per customer

Customer type (\$8, 2) (\$8, 2.5) (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) What if you charge \$8.50? Proportion $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$ $\frac{1}{8}$ $\frac{7}{24}$ Customer type (\$8, 2) (\$8, 2.5) (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) Step 1: convert to same denominator Proportion Customer type (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) • If you charge \$8.50 then Proportion Average consumption: Profit per customer Average cost per customer Customer type (\$9, 3) (\$9, 3.5) • If you charge \$9 then Proportion Average consumption:

Average cost per customer

Profit per customer