New topic: Asymmetric information and Adverse Selection

Probability and conditional probability

Finite set of *states* $S = \{s_1, s_2, ..., s_n\}$. Subsets of *S* are called *events*.

Probability distribution over S:

Denote the probability of state *s* by p(s).

Given an event $E \subseteq S$, the probability of *E* is:

$$P(E) = \begin{cases} 0 & \text{if } E = \emptyset \\ \sum_{s \in E} \rho(s) & \text{if } E \neq \emptyset \\ \overline{E} \\ \text{Denote by } \neg E \text{ the complement of } E \subseteq S. \end{cases}$$

For every
$$i=1, ..., n$$

 $D \leq P_i \leq 1$
 $\sum_{i=1}^{n} P_i = 1$

Example

$$S = \{a, b, c, d, e, f, g\} \qquad A = \{a, c, d, e\} \qquad B = \{a, e, g\} \neg A = \{b, f, g\} \qquad \neg B = \{b, c, J, f\} \qquad P(\neg E) = 1 - P(E)$$

Given

$$P(A) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} = \begin{pmatrix} 9 \\ 14 \end{pmatrix} P(B) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}$$

$$A \cap B = \{\alpha, e\} P(A \cap B) = \frac{1}{14} + \frac{6}{14} = \frac{9}{14}$$

$$A \cup B = \{\alpha, c_1 d_1 e, c_3\} P(A \cup B) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \begin{pmatrix} 11 \\ 14 \end{pmatrix}$$
Note: for every two events E and F: $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{8}{14} + \frac{10}{14} - \frac{9}{14} = \begin{pmatrix} 11 \\ 14 \end{pmatrix}$

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$P(A \mid B) = P(\{\alpha, c_1, c_2\} \mid \{\alpha, \beta, \beta\}) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{7}{14}}{\frac{10}{14}} = \begin{pmatrix} \frac{7}{10} \\ 10 \end{pmatrix}$$

We denote by P(E|F) the probability of *E* conditional on *F* and define it as:

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$
Assuming $P(F) \neq 0$
Probability of E could house on (or given) F
Continuing the example above where $\frac{a \quad b \quad c \quad d \quad e \quad f \quad g}{\frac{1}{14} \quad \frac{2}{14} \quad 0 \quad \frac{1}{14} \quad \frac{6}{14} \quad \frac{1}{14} \quad \frac{3}{14}}$

$$A = \{a, c, d, e\}$$

$$B = \{a, e, g\}$$

$$P(A) = \frac{1}{14} + 0 + \frac{1}{14} + \frac{6}{14} = \frac{8}{14}, P(B) = \frac{1}{14} + \frac{6}{14} + \frac{3}{14} = \frac{10}{14}, P(A \cap B) = \frac{1}{14} + \frac{6}{14} = \frac{7}{14}$$

$$P(A \mid B) = \frac{P(B \cap A)}{P(B)} = \frac{7}{10}$$

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)} = \frac{7}{16}$$
The conditional probability formula can also be applied to individual states:

The conditional probability formula can also be applied to individual states:

$$F = \{s\}$$

$$P(F|E) = P(s|E)$$

$$p(s|E) = \begin{cases} p(g) = 0 = 0 \\ P(E) = P(E) \end{cases} \quad s \notin E \qquad (1 - 1) \\ f(E) = P(E) \end{cases}$$

$$p(s) = p(s) = \begin{cases} p(s) = 0 \\ P(E) = P(E) \end{cases} \quad s \notin E \qquad (1 - 1) \\ f(E) = P(E) \end{cases}$$

We can think of $p(\cdot | E)$ as a probability distribution on the entire set S. Continuing the example above

where
$$\underline{S} = \{a, b, c, d, e, f, g\}$$
, $\underline{A} = \{a, c, d, e\}$ and $\begin{bmatrix} a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14} \\ \frac{1}{14} & \frac{3}{14} & P \end{bmatrix}$ (so that $\underline{P(A) = \frac{8}{14}}$)
 $\underline{P(A)} = \frac{1}{\frac{1}{8}} = \frac{1}{8}$ $p(\bullet|A):$ $\begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ \frac{1}{8} & 0 & 0 \\ \frac{1}{8} & \frac{6}{8} & 0 & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & 0 \\ \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & 0 & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac$

Shortcut to obtain the revised or updated probabilities:

Initial or prior probabilities. Note that here they all have the same denominator .	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{100} & \frac{70}{100} & \frac{5}{100} & \frac{10}{100} \end{pmatrix} $	
Information or conditioning event: $F = \{a, b, d\}$		
STEP 1. Set the probability of every state which is not in <i>F</i> to zero:	$\left(\begin{array}{cccc} a & b & c & d \\ & & 0 & \end{array}\right)$	
STEP 2. For the other states write new fractions with the same numerators as before:	$ \begin{pmatrix} a & b & c & d \\ 15 & 70 & 0 & \frac{10}{} \end{pmatrix} $	15+70+10= 95
STEP 3. In every denominator put the sum of the numerators: 15+70+10=95. Thus the updated probabilities are:	$ \begin{pmatrix} a & b & c & d \\ \frac{15}{95} & \frac{70}{95} & 0 & \frac{10}{95} \end{pmatrix} $	

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.	$\frac{3}{20} \frac{6}{20} \frac{1}{20} = 0 \frac{8}{20} \frac{2}{20}$	₫—
Initial or prior probabilities:	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Information:	$F = \{a, b, d, e\}$	
STEP 0. Rewrite all the probabilities with the same denominator:	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
STEP 1. Change the probability of every state which is not in <i>F</i> to zero:	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
STEP 2. Write new fractions which have the same numerators as before:	$\begin{pmatrix} a & b & c & d & e & f \\ 3 & 6 & 0 & & 0 \end{pmatrix}$	3+6+0+8= 1>
STEP 3 . In every denominator put the sum of the numerators: 3+6+8=17.	$ \begin{pmatrix} a & b & c & d & e & f \\ \frac{3}{17} & \frac{6}{17} & 0 & 0 & \frac{8}{17} & 0 \end{pmatrix} $	

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

ADVERSE SELECTION Akerlof on market for second-hand cars

Utility-of-money of a potential seller who owns of a car of quality q:

 $U(m) = \begin{cases} m+u(q) & \text{if does not sell the car} \\ m & \text{if sells the car} \end{cases}$ $U(q) = \text{vulue of a car of quality} \\ q to the owner of such \\ q to the owner \\ q to the owner ow$

Thus, if her initial wealth is W_0 she will sell the car a price p only if:

before sale utility: $W_0 + u(q)$ willing to sell if after sale at price p - $W_0 + p$ $W_0 + p \ge W_0 + u(q)$ i.e. if $p \ge u(q)$

Utility-of-money of a potential buyer who does not own a car:

 $V(m) = \begin{cases} m & \text{if does not buy a car} \\ m+v(q) & \text{if becomes owner of a car of quality } q & v(q) = value of car of quality } q & \text{b the} \\ \text{Thus, if his initial wealth is } W_0 & \text{he will but a car of quality } q \text{ at price } p \text{ only if: } potential buyer} \\ before purches which \gamma : W_0 & willing he buy if \\ after purches (r) : W_0 - p + v(q) & willing he buy if \\ after purches (r) : W_0 - p + v(q) & willing he buy if \\ w_0 - p + v(q) \geq W_0 & \text{i.e. if } v(q) \geq p \\ \text{Assume that, for every quality } q, v(q) > u(q) > 0 & p \\ \text{Both buyers and sellers} & u(q) & v(q) \\ \text{are vish neutral} \end{cases}$

V(q) > u(q)

What if there is **asymmetric information**: only the owner knows the quality q?

Quality q	best: A	В	С	D	Ε	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion	120	<u>200</u> 1120	106 1120	240	<u>320</u> 1120	140 1120	
v(q) (seller)	720	630	540	450	360	270	
u(q) (buyer)	800	700	600	500	400	300	

Publicly available information:

Buyer: if a car is offered to me at price *p* should I buy it?

getting(\$800)\$700\$600\$500\$400\$300a car $\frac{120}{1120}$ $\frac{200}{1(20)}$ $\frac{106}{1(20)}$ $\frac{240}{1120}$ $\frac{320}{1120}$ $\frac{140}{1(20)}$