New topic: Asymmetric information and Adverse Selection

Probability and conditional probability

Finite set of states $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Subsets of S are called events.
Probability distribution over S :

$$
\begin{array}{llll}
s_{1} & s_{2} & \ldots & s_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}
$$

$$
\begin{aligned}
& \text { For every } i=1, \ldots, n \\
& 0 \leq p_{i} \leq 1 \\
& \sum_{j=1}^{n} p_{j}=1
\end{aligned}
$$

Denote the probability of state s by $p(s)$.
Given an event $E \subseteq S$, the probability of E is:

$$
P(E)=\left\{\begin{array}{ccc}
0 & \text { if } \quad E=\varnothing \\
\sum_{s \in E} p(s) & \text { if } \quad E \neq \varnothing
\end{array}\right.
$$

\bar{E}
Denote by $\neg E$ the complement of $E \subseteq S$.
\downarrow all the states in S that are not in E

Example

$$
\begin{array}{lll}
S=\{a, b, c, d, e, f, g\} & A=\{a, c, d, e\} & B=\{a, e, g\} \\
\neg A=\{b, f, g\} & \neg B=\{b, c, d, f\} & P(\neg E)=1-P(E)
\end{array}
$$

Given

$$
\begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array}
$$

$$
P(A)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}=\left(\frac{8}{14} \quad P(B)=\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\frac{10}{14}\right.
$$

$$
A \cap B=\{a, e\} \quad P(A \cap B)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}
$$

$$
A \cup B=\left\{a, c_{1} d_{1} e, g\right\}
$$

$$
P(A \cup B)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\left(\frac{11}{14}\right.
$$

Note: for every two events E and $F: \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{8}{14}+\frac{10}{14}-\frac{7}{14}=\left(\frac{11}{14}\right)$

$$
\begin{gathered}
P(E \cup F)=P(E)+P(F)-P(E \cap F) \\
P(A \mid B)=P\left(\{a, c, d, c\} \left\lvert\,\left\{a, \text { Page } 2 \text { of } 11=\frac{P(A \cap B)}{P(B)}=\frac{\frac{7}{14}}{\frac{10}{14}}=\frac{7}{10}\right.\right.\right.
\end{gathered}
$$

We denote by $P(E \mid F)$ the probability of E conditional on F and define it as:

$$
P(\underbrace{E \mid F})=\frac{P(E \cap F)}{P(F)} \quad \text { assuming } \quad P(F) \neq 0
$$

Probability of E condihoucal on (or given) F

$$
\text { Continuing the example above where } \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
\frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}
\end{array} \quad A=\{a, c, d, e\} \quad B=\{a, e, g\}
$$

$$
P(A)=\frac{1}{14}+0+\frac{1}{14}+\frac{6}{14}=\frac{8}{14}, \quad P(B)=\frac{1}{14}+\frac{6}{14}+\frac{3}{14}=\frac{10}{14}, \quad P(A \cap B)=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}
$$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{7}{10} \\
& P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{\frac{7}{14}}{\frac{8}{14}}=\frac{7}{8}
\end{aligned}
$$

The conditional probability formula can also be applied to individual states:

$$
\begin{aligned}
& F=\{s\} \\
& P(F \mid E)=P(s \mid E)
\end{aligned} \underbrace{p(s \mid E)}=\left\{\begin{array}{llll}
\frac{P(\phi)}{P(E)}=\frac{0}{P(E)} \text { if } & s \notin E \\
\frac{P(s)}{P(E)} & \text { if } & s \in E & \text { assuming } P(E) \neq 0
\end{array}\right.
$$

We can think of $p(\cdot \mid E)$ as a probability distribution on the entire set S. Continuing the example above where $S=\{a, b, c, d, e, f, g\}, \quad A=\{a, c, d, e\}$ and $\begin{array}{ccccccc}a & b & c & d & e & f & g \\ \frac{1}{14} & \frac{2}{14} & 0 & \frac{1}{14} & \frac{6}{14} & \frac{1}{14} & \frac{3}{14}\end{array} \quad$ (so that $\left.P(A)=\frac{8}{14}\right)$

$$
\frac{P(a)}{P(A)}=\frac{\frac{1}{14}}{\frac{8}{14}}=\frac{1}{8} p(\cdot \mid A): \begin{array}{llllll}
a & \dot{b} & c & d & e & f \\
\frac{1}{8} & 0 & 0 & \frac{1}{8} & \frac{6}{8} & 0 \\
0
\end{array} \quad 1+0+1+6=8
$$

Shortcut to obtain the revised or updated probabilities:

Initial or prior probabilities. Note that here they all have the same denominator.	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{100} & \frac{70}{100} & \frac{5}{100} & \frac{10}{100}\end{array}\right)$	
Information or conditioning event: $F=\{a, b, d\}$		
STEP 1. Set the probability of every state which is not in F to zero:	$\left(\begin{array}{llll}a & b & c & d \\ & & 0 & \end{array}\right)$	Ω
STEP 2. For the other states write new fractions with the same numerators as before:	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{\ldots} & \frac{70}{\ldots} & 0 & \frac{10}{\ldots}\end{array}\right)$	$\begin{array}{r} 15+70+10= \\ 95 \end{array}$
STEP 3. In every denominator put the sum of the numerators: $15+70+10=95$. Thus the updated probabilities are:	$\left(\begin{array}{cccc}a & b & c & d \\ \frac{15}{95} & \frac{70}{95} & 0 & \frac{10}{95}\end{array}\right)$	

EXAMPLE 2. Sample space or set of states: $\{a, b, c, d, e, f\}$.

$$
\frac{3}{20} \frac{6}{20} \frac{1}{20} 0 \frac{8}{20} \frac{2}{20}
$$

Initial or prior probabilities:	$\left(\begin{array}{cccccc}a & b & c & d & e & f \\ \frac{3}{20} & \frac{3}{10} & \frac{1}{20} & 0 & \frac{2}{5} & \frac{1}{10}\end{array}\right)$
Information:	$F=\{a, b, d, e\}$
STEP 0. Rewrite all the probabilities with the same denominator:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ & & & & & \\ & & & & & \end{array}\right)$
STEP 1. Change the probability of every state which is not in F to zero:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ & & & & & \\ & & & & & \end{array}\right)$
STEP 2. Write new fractions which have the same numerators as before:	$\left(\begin{array}{llllll}a & b & c & d & e & f \\ 3 & 6 & & 0 & 8 & \\ - & - & 0 & - & - & 0\end{array}\right)$
STEP 3. In every denominator put the sum of the numerators: $3+6+8=17$. $p(\cdot \mid F)$	$\left(\begin{array}{cccccc}a & b & c & d & e & f \\ \frac{3}{17} & \frac{6}{17} & 0 & 0 & \frac{8}{17} & 0\end{array}\right)$

$3+6+0+8=17$

ADVERSE SELECTION
Akerlof on market for second-hand cars
Utility-of-money of a potential seller who owns of a car of quality q :

$$
U(m)= \begin{cases}m+u(q) & \text { if does not sell the car } \\ m & \text { if sells the car }\end{cases}
$$

$u(q)=$ value of a car of quality q to the owner of such a car
Thus, if her initial wealth is W_{0} she will sell the car a price p only if:
before sole utility: $W_{0}+u(q)$ willing to sell if
after sale ar price p

$$
w_{0}+p
$$

Utility-of-money of a potential buyer who does not own a car:

$$
\begin{array}{r}
W_{0}+p \geq W_{0}+u(g) \text { i.e. } \\
\text { if } p \geq u(g)
\end{array}
$$

Thus, if his initial wealth is W_{0} he will but a car of quality q at price p only if: potential buyer
before purchas utility: W_{0}
after purchase ": $W_{0}-p+v(q)$
willing to buy if at price
Assume that, for every quality $q, \underline{v(q)>u(q)>0}$

$$
\begin{aligned}
& W_{0}-p+v(g) \geq W_{0} \\
& \text { i.e. if } v(q) \geq p
\end{aligned}
$$

Both buyers aud sellers
 are risk neutral

$$
V(q)>u(q)
$$

What if there is asymmetric information: only the owner knows the quality q ?
Publicly available information:

Quality q	best: A	B	C	D	E	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion	$\frac{120}{1120}$	$\frac{200}{1120}$	$\frac{100}{1120}$	$\frac{240}{1120}$	$\frac{320}{1120}$	$\frac{140}{420}$	
$v(q)$ (seller)	720	630	540	450	360	270	
$u(q)$ (buyer)	800	700	600	500	400	300	

Buyer: if a car is offered to me at price p should I buy it?
getting
$\operatorname{acar}$$\left(\begin{array}{ccccc}\$ 800 & \$ 700 & \$ 600 & \$ 500 & \$ 400 \\ \frac{120}{1120} & \frac{200}{1120} & \frac{100}{1120} & \frac{240}{1120} & \frac{320}{1120} \\ \frac{1400}{1120}\end{array}\right)$

