2. A continuum of contracts

Again $W=900, L=700, \quad p=\frac{1}{50}, \quad U(m)=\sqrt{m}, \quad B=\left(h_{B}=60, d_{B}=100\right)$.
The profit from contract B is
$\pi(B)=$
Suppose that the insurance company tells the consumer that she can choose any other contract that guarantees a profit of $\$ 48$ to the insurer,
$h(d)=$
Examples: $h(50)=61, h(100)=60($ this is contract $B), h(150)=59, h(200)=58$
Will the consumer still choose contract $B=\left(h_{B}=60, d_{B}=100\right)$?

By the familiar slope argument...

Contractual relationships between two individuals: Principal and Agent. Examples:

Principal	Agent	Contract
Owner of firm	Manager	Division of profits
Client	Lawyer	Lawyer's fee
Land-owner	Farmer	Division of crop
Patient	Doctor	Doctor's fee

Assume that neither individual has any additional wealth to draw from.
The outcome of the relationship is uncertain:

A contract is specified as a pair $\left(w^{G}, w^{B}\right)$

The set of possible contracts can be represented graphically by means of an Edgeworth box

The length of this side is

Example: $X^{G}=\$ 800, X^{B}=\$ 500, C=\left(w^{G}=300, w^{B}=400\right)$

The length of this side is

INDIFFERENCE CURVES Start with the Principal

Page $\mathbf{4}$ of $\mathbf{1 4}$

INDIFFERENCE CURVES now the Agent

Page 5 of $\mathbf{1 4}$

The 45° lines

Page 6 of 14

Example: $X^{G}=\$ 800, X^{B}=\$ 500, D=\left(w^{G}=150, w^{B}=150\right), E=\left(w^{G}=600, w^{B}=300\right)$

Recall: a contract is a pair $\left(w^{G}, w^{B}\right)$ where w^{G} is the payment to the Agent if the outcome is X^{G} and w^{B} is the payment to the Agent if the outcome is X^{B}.
$U_{P}(m)$ Principal's utility function
$U_{A}(m) \quad$ Agent's utility function.

Given a contract $\mathrm{C}=\left(w^{G}, w^{B}\right)$, the Principal's expected utility is:
$\mathbb{E}\left[U_{P}(C)\right]=$
while the Agent's expected utility is:
$\mathbb{E}\left[U_{A}(C)\right]=$

We want to characterize the set of Pareto efficient contracts.

Definition. Contract \boldsymbol{C} is Pareto dominated by contract \boldsymbol{B} if: either

Definition. A contract that is not Pareto dominated is called Pareto efficient (or Pareto optimal). Thus contract C is Pareto efficient if for every other contract D , either
or
or both.

Example. $X^{G}=1,000, X^{B}=600, p=\frac{1}{3} U_{P}(\mathrm{~m})=\sqrt{\mathrm{m}} \quad$ and $\quad U_{A}(m)=m$.
$C=(400,400)$ is Pareto dominated by contract $B=(676,276)$:
$\mathbb{E}\left[U_{P}(B)\right]=$
$\mathbb{E}\left[U_{p}(C)\right]=$
and
$\mathbb{E}\left[U_{A}(B)\right]=$
$\mathbb{E}\left[U_{A}(C)\right]=$

For the Principal:

Page 11 of $\mathbf{1 4}$

For the Agent:

Page 12 of 14

For the Principal: $C \succ_{P} D$

$$
C \succ_{P} B
$$

$$
E \succ_{P} C
$$

$$
A \succ_{P} C
$$

$$
A \succ_{P} E
$$

For the Agent: $\begin{aligned} & C \succ_{A} A \\ & D \succ_{A} E\end{aligned}$
Thus C is Pareto dominated by E (or E Pareto dominates C). So C is not Pareto efficient.
Any contract C at which the indifference curves cross cannot be Pareto efficient, because any contract in the area between the two curves is Pareto superior to (or Pareto dominates) C.

Thus a contract C in the interior of the box is Pareto efficient if and only if the two indifference curves (of Principal and Agent) are tangent at C.

Example:

