2. A continuum of contracts

Again W = 900, L = 700, $p = \frac{1}{50}$, $U(m) = \sqrt{m}$, $B = (h_B = 60, d_B = 100)$. The profit from contract *B* is

 $\pi(B) =$

Suppose that the insurance company tells the consumer that she can choose any other contract that guarantees a profit of \$48 to the insurer,

h(d) =

Examples: h(50) = 61, h(100) = 60 (this is contract *B*), h(150) = 59, h(200) = 58

Will the consumer still choose contract $B = (h_B = 60, d_B = 100)$?

By the familiar slope argument...

Contractual relationships between two individuals: Principal and Agent. Examples:

Principal	Agent	Contract
Owner of firm	Manager	Division of profits
Client	Lawyer	Lawyer's fee
Land-owner	Farmer	Division of crop
Patient	Doctor	Doctor's fee

Assume that neither individual has any additional wealth to draw from. The outcome of the relationship is uncertain: A contract is specified as a pair (w^G, w^B)

The set of possible contracts can be represented graphically by means of an Edgeworth box

Example: $X^G = \$800, X^B = \$500, C = (w^G = 300, w^B = 400)$

Page 4 of 14

Page 5 of 14

The 45° lines

Example:
$$X^G = \$800, X^B = \$500, D = (w^G = 150, w^B = 150), E = (w^G = 600, w^B = 300)$$

Recall: a contract is a pair (w^G, w^B) where W^G is the payment to the Agent if the outcome is X^G and w^B is the payment to the Agent if the outcome is X^B .

 $U_P(m)$ Principal's utility function

 $U_A(m)$ Agent's utility function.

Given a contract $C = (w^G, w^B)$, the Principal's expected utility is:

 $\mathbb{E} \big[U_P(C) \big] =$

while the Agent's expected utility is:

 $\mathbb{E} \big[U_{\scriptscriptstyle A}(C) \big] =$

We want to characterize the set of **Pareto efficient contracts**.

Definition. Contract *C* is *Pareto dominated* by contract *B* if:

Definition. A contract that is not Pareto dominated is called *Pareto efficient* (or Pareto optimal). Thus contract C is Pareto efficient if for every other contract D, either

or

or both.

Example.
$$X^G = 1,000, X^B = 600, p = \frac{1}{3} U_P(m) = \sqrt{m}$$
 and $U_A(m) = m$.

C = (400, 400) is Pareto dominated by contract B = (676, 276):

 $\mathbb{E} \big[U_P(B) \big] =$

 $\mathbb{E} \big[U_P(C) \big] =$

and

 $\mathbb{E} \big[U_{\scriptscriptstyle A}(B) \big] =$

 $\mathbb{E} \big[U_{\scriptscriptstyle A}(C) \big] =$

For the Principal:

For the Agent:

For the Principal: $C \succ_p D$ $C \succ_p B$ $E \succ_p C$ $A \succ_p C$ $A \succ_p E$ For the Agent: $C \succ_A A$ $B \succ_A A$ $C \succ_A B$ $E \succ_A C$ $D \succ_A C$

Thus C is Pareto dominated by E (or E Pareto dominates C). So C is not Pareto efficient.

Any contract C at which the indifference curves cross cannot be Pareto efficient, because any contract in the area between the two curves is Pareto superior to (or Pareto dominates) C.

Thus a contract *C* in the interior of the box is Pareto efficient if and only if the two indifference curves (of Principal and Agent) are tangent at *C*.

Example:

