2. A continuum of contracts

Again W = 900, L = 700, $p = \frac{1}{50}$, $U(m) = \sqrt{m}$, $B = (h_B = 60, d_B = 100)$. The profit from contract *B* is $\Pi(B) = 60 - \frac{1}{50}(700 - 100) = 4.8$ $\pi(B) = \Pi(B) = \pi(B) = 100$

$$T(h,d) = h - \frac{1}{50}(200 - d) = 48$$

Suppose that the insurance company tells the consumer that she can choose any other contract that guarantees a profit of \$48 to the insurer,

 $h(d) = 62 - \frac{1}{50}d$

Examples: h(50) = 61, h(100) = 60 (this is contract *B*), h(150) = 59, h(200) = 58

Will the consumer still choose contract $B = (h_B = 60, d_B = 100)$?

By the familiar slope argument...

Principal-Agent relationships

Contractual relationships between two individuals: Principal and Agent. Examples:

	Principal	Agent	Contract
Counter Airst care	Owner of firm	Manager	Division of profits
Where	Client	Lawyer	Lawyer's fee
Agent's effort	Land-owner	Farmer	Division of crop
ay issue	Patient	Doctor	Doctor's fee

Assume that <u>neither individual has any additional wealth to draw from</u>. The outcome of the relationship is uncertain:

> Two possible outcomes [dollar amounts] Good bad $X_G > X_B$ also known probability P 1-P fixed and known

A contract is specified as a pair (w^G, w^B) w^G payment to Agent if ourcome X_G so that Principal will get $X_G - w^G$ w^B payment to Agent if ourcome is X_B So Principal gets $X_B - w^B$ $D \le w^B \le X_B$

The set of possible contracts can be represented graphically by means of an Edgeworth box

Example: $X^G = \$800, X^B = \$500, C = (w^G = 300, w^B = 400)$

INDIFFERENCE CURVES Start with the Principal

Page 5 of 14

The 45° lines

Example:
$$X^G = \$800, X^B = \$500, D = (w^G = 150, w^B = 150), E = (w^G = 600, w^B = 300)$$

Recall: a contract is a pair (w^G, w^B) where w^G is the payment to the Agent if the outcome is X^G and w^B is the payment to the Agent if the outcome is X^B .

 $U_P(m)$ Principal's utility function $\vee N \eta$

 $U_A(m)$ Agent's utility function. $\vee NM$

Given a contract $C = (w^G, w^B)$, the Principal's expected utility is:

$$\mathbb{E}[U_{P}(C)] = P \cup_{P} (X_{G} - W^{G}) + (I - P) \cup_{P} (X_{B} - W^{B})$$

while the Agent's expected utility is:

$$\mathbb{E}[U_A(C)] = P U_A(w^G) + (I-P) U_A(w^B)$$

We want to characterize the set of Pareto efficient contracts.

contract C is Pareto efficient if for every other contract D, either

or

or both.