We don't have to reduce the probability to zero: $\quad L=\left(\begin{array}{ccc}\$ 10 & \$ 50 & \$ 110 \\ \frac{1}{4} & \frac{1}{2}=\frac{5}{10} & \frac{1}{4}\end{array}\right)$ Take away some of the probability of $\$ 50$, say $\frac{3}{10}$ and spread it between a lower amount, say $\$ 15$, and a higher amount, say $\$ 90$:

$$
M=\left(\begin{array}{ccccc}
\$ 10 & \$ 15 & \$ 50 & \$ 90 & \$ 110 \\
\frac{1}{4} & r & \frac{5}{10}-\frac{3}{10}=\frac{2}{10} & s & \frac{1}{4}
\end{array}\right)
$$

For this to be a mean preserving spread we need
(1) $r+s=\frac{3}{10}$
(2) $\frac{3}{10} 50=15 r+90 \mathrm{~s}$
in computation of $E[M]=\frac{2}{10} 50+r 13+590$
$\left(\begin{array}{cccc}\text { in computation of } E[L]=\frac{5}{10} 50=\left(\frac{2}{10} 50\right. \\ M=\left(\begin{array}{ccccc}\$ 10 & \$ 15 & \$ 50 & \$ 90 & \$ 110 \\ \frac{1}{4} & \frac{4}{25} & \frac{2}{10} & \frac{7}{50} & \frac{1}{4}\end{array}\right)\end{array}\right.$
Solution is $r=\frac{4}{25}, s=\frac{7}{50}$

Write $L>_{\text {SSD }} M$ to mean that \boldsymbol{L} dominates \boldsymbol{M} in the sense of second-order stochastic dominance.

Definition. $L>_{S S D} M$ if M can be obtained from L by a finite sequence of mean preserving spreads, that is, if there is a sequence of money lotteries $\left\langle L_{1}, L_{2}, \ldots, L_{m}\right\rangle$ (with $m \geq 2$) such that:
(1) $L_{1}=L$,
(2) $L_{m}=M$
(3) for every $i=1, \ldots, m-1, L_{i} \rightarrow_{M P S} L_{i+1}$

Theorem. $L>_{\text {SSD }} M$ if and only if $\mathbb{E}[U(L)]>\mathbb{E}[U(M)]$ for every strictly increasing and strictly concave utility function U.

BINARY LOTTERIES

We want to draw indifference curves in this diagram.

Case 1: risk-neutral agent

$$
\begin{aligned}
& \text { Let } A \text { and } B \text { be such that } \mathbb{E}[U(A)]=\mathbb{E}[U(B)] \text { : } \\
& J=E[A] \quad=E[B] \\
& p x_{A}+(1-p) y_{A}=p x_{B}+(1-p) y_{B} \\
& (1-p)\left(y_{A}-y_{B}\right)=-p\left(x_{A}-x_{B}\right) \\
& \frac{\overbrace{y_{A}-y_{B}}^{\text {rise }}}{\underbrace{x_{A}-x_{B}}_{r_{A}}}=-\frac{p}{1-p} \\
& \text { Page } 2 \text { of } 13
\end{aligned}
$$

Page 3 of 13

Case 2: risk-averse agent

$\left[t U\left(x_{A}\right)+(1-E) U\left(x_{B}\right)\right]$
Page 4 of $\mathbf{1 3}$

$$
\begin{aligned}
E[U(c)]= & \overbrace{(1-p) \underbrace{U\left(t y_{A}+(1-t) y_{B}\right)}_{V\left(t x_{A}+(1-t) x_{B}\right)}}^{U(1-t) U\left(y_{B}\right)}
\end{aligned}
$$

$$
E[U(c)]>p[\underbrace{t U\left(x_{A}\right)}+(1-t) U\left(x_{B}\right)]
$$

$\mathbb{E}[U(C)]=$

$$
\begin{aligned}
& +(1-p)\left[t \cup\left(y_{A}\right)+(1-t) U\left(y_{B}\right)\right] \\
& =p t U\left(x_{A}\right)+(1-p) t U\left(y_{A}\right)+p(1-t) U\left(x_{B}\right)+
\end{aligned}
$$

$$
=E[U(A)]
$$

Case 2: risk-loving agent

