

Slope of an indifference curve

Preliminaries on the meaning of the derivative.
$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}+\frac{2}{3} x \quad$ The derivative is used to
construct a linear function to approximate the function $f(x)$ at a point x_{0} :

$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}+\frac{2 x}{3}$. Let $x_{0}=9$.
$f(9)=30 \quad$ and $\quad f^{\prime}(9)=\frac{37}{6}$
so that $g(x)=30+\frac{37}{6} x-\frac{37}{6} 9$
Let's see how well g approximates f
Take $x=9.1$. Then $f(9.1)=\sqrt{9.1}+\frac{9.1^{2}}{3}=30.61993 g(9.1)=30+\frac{77}{6}(9.1)-\frac{37}{6} \cdot 9=$
Take $x=12$. Then $f(12)=51.4641$

$$
g(12)=48.5
$$

END OF PRELIMINARIES

$$
p U\left(x_{A}\right)+(1-p) U\left(y_{A}\right)
$$

Slope of indifference curve
Let A and B be two points that lie on the same indifference curve: $\mathbb{E}[U(A)]=\mathbb{E}[U(B)]$,

- Since x_{B} is close to $x_{A}, U\left(x_{B}\right) \simeq U\left(x_{A}\right)+U^{\prime}\left(X_{A}\right)\left(x_{B}-x_{A}\right)$
- Since y_{B} is close to $y_{A}, U\left(y_{B}\right) \simeq U\left(y_{A}\right)+U^{\prime}\left(y_{A}\right)\left(y_{B}-y_{A}\right)$

Thus the RHS of $\left({ }^{*}\right)$ can be written as

$$
\begin{aligned}
& E[U(B)] \simeq P\left[U\left(X_{A}\right)+U^{\prime}\left(x_{A}\right) \cdot\left(x_{B}-x_{A}\right)\right]+ \\
& (1-p)\left[U\left(y_{A}\right)+U^{\prime}\left(y_{A}\right)\left(y_{B}-y_{A}\right)\right.
\end{aligned}
$$

So (*) becomes
which can be written as

$$
\frac{\overbrace{y_{A}-y_{B}}^{\text {rise }}}{\underbrace{x_{A}-x_{B}}_{\text {run }}}=-\frac{p}{1-p} \frac{U^{\prime}\left(x_{A}\right)}{U^{\prime}\left(y_{A}\right)}
$$

Comparing the slope at a point with the ratio $\frac{p}{1-p}$
Look at the case of risk aversion but the other cases are similar.

$$
U^{\prime}\left(m_{n}\right)>U^{\prime}\left(m_{2}\right)
$$

- at a point on the 45° line, where $x=y$,

$$
\begin{aligned}
& =y, \quad U^{\prime}(x)=U^{0}(y) \text { so } \frac{U^{\prime}(x)}{U^{\prime}(y)}=1 \text { slop } \\
& =x>y, \\
& U^{\prime}(x)<U^{\prime}(y) \text { so } \frac{U^{\prime}(x)}{U^{\prime}(y)}<1 \\
& \text { slope }<\frac{p}{\text { lp }}
\end{aligned}
$$

- at a point below the 45° line, where $x>y$,

$$
=\frac{p}{1-p}
$$

Page 11 of 13

Example. $U(m)=\ln (m), \quad p=\frac{1}{3}$. What is the slope of the indifference curve at points $A=(10,40)$ and $B=(10,10)$?
The expected utility of lottery $A=\left(\begin{array}{cc}10 & 40 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is
A is above 45° line B is on 45° line

The slope of the indifference curve at point A is equal to
The expected utility of lottery $B=\left(\begin{array}{cc}10 & 10 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is

$$
\frac{p}{1-p}=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}
$$

The slope of the indifference curve at point B is equal to

$$
U^{\prime}(m)=\frac{1}{m}
$$

$$
\begin{array}{r}
\frac{p}{1-p} \frac{U^{\prime \prime}(10)}{U^{\prime}(40)}=\frac{\frac{1}{2} \frac{\frac{1}{10}}{\frac{1}{40}}=}{} \begin{array}{r}
\frac{1}{2} \frac{1}{10} 40=\frac{1}{2} 4=2
\end{array}
\end{array}
$$

At point B slope of ind. curve in abjolure value is

$$
\frac{p}{1-p} \cdot \frac{U^{\prime}(10)}{V^{\prime}(10)}=\frac{1}{2}
$$

Page 13 of 13

DEMAND SIDE OF INSURANCE

Page 1 of $\mathbf{1 2}$
$W=40,000, L=5,000$, probability of loss $p=\frac{1}{50}, \quad U(m)=\ln (m)$

$$
\begin{array}{r}
N I=\left(\begin{array}{cc}
35,000 & 40,000 \\
\frac{1}{50} & \frac{49}{50}
\end{array}\right) \mathbb{E}[U(N I)]=\frac{1}{50} \ln (35,000)+\frac{49}{50} \ln (40,000) \\
=10.5940
\end{array}
$$

Suppose the consumer is offered $A=\left(h_{A}=200, d_{A}=0\right)$ which would yield a profit of

$$
\begin{aligned}
\pi_{A}=200-\frac{1}{50} 5000=100 & \text { Would she purchase it? } \\
A & =\binom{39,800}{1}
\end{aligned} \quad E[U(A)]=\ln (39,800 \mathrm{~J}=10.5916
$$

A is below the reservation Suppose the consumer is offered $B=\left(h_{B}=50, d_{B}=100\right)$. indifference curve

$$
\begin{array}{r}
\mathbb{E}[U(B)]=\frac{1}{50} \ln (40,000-50-100)+\frac{49}{50} \ln _{n}(40,000-50)= \\
10.5953
\end{array}
$$

$$
\pi_{B}=50-\frac{1}{50}(5000-100)=-48
$$

B is above res. ind. cure

So we must exclude points that are below the indifference curve that goes through NI, called the reservation indifference curve, and exclude all those that are above the zero-profit line. The only observable contracts are:

