

Slope of an indifference curve

Preliminaries on the meaning of the derivative.

$$f(x) = \sqrt{x} + \frac{x^2}{3}$$
. Then $f'(x) = \frac{1}{2\sqrt{x}} + \frac{2}{3}$

The derivative is used to

construct a linear function to approximate the function f(x) at a point x_0 :

Page 8 of 13

$$f(x) = \sqrt{x} + \frac{x^2}{3}$$
. Then $f'(x) = \frac{1}{2\sqrt{x}} + \frac{2x}{3}$. Let $x_0 = 9$.

$$f(9) = 30$$
 and $f'(9) = \frac{37}{6}$
so that $g(x) = 30 + \frac{37}{6} \times -\frac{37}{6} \cdot 9$ Let's see how well g approximates f
Take $x = 9.1$. Then $f(9.1) = \sqrt{9.1} + \frac{9.1}{3} = 30.61995 g(9.1) = 30 + \frac{77}{6}(9.1) - \frac{37}{6} \cdot 9 = 30.61667$
Take $x = 12$. Then $f(12) = 51.4641$ $g(12) = 48.5$

END OF PRELIMINARIES

Slope of indifference curve

Page 10 of 13

Let *A* and *B* be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$,

- Since x_B is close to x_A , $U(x_B) \simeq U(x_A) + U'(x_A) (x_B x_A)$
- Since y_B is close to y_A , $U(y_B) \simeq U(\gamma_A) + U'(\gamma_A)(\gamma_B \gamma_A)$

Thus the RHS of (*) can be written as

$$E[U(B)] \simeq P[U(X_A) + U'(X_A) \cdot (X_B - X_A)] + (1-p)[U(Y_A) + U'(Y_A)(Y_B - Y_A)]$$

So (*) becomes

rise

So (*) becomes

$$PU(x_A) + (1-p)U(y_A) \simeq$$

 $E[V(\Lambda)]$

that is,

which can be written as

XA XB

 $pU(x_{A}) + (1-p)U(y_{A})$

(1 - P)

 $\frac{P}{1-p} = \frac{U'(x_A)}{U'(y_A)}$

 $P U(x_B) + (1 - \rho) U(y)$

 $\boldsymbol{\chi}$

(P)

(*)

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.

Page 11 of 13

Example. $U(m) = \ln(m)$, $p = \frac{1}{3}$. What is the slope of the indifference curve at points A = (10,40) and B = (10,10)? The expected utility of lottery $A = \begin{pmatrix} 10 & 40 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ is B is D is $A = \begin{pmatrix} 10 & 40 \\ 1 & \frac{2}{3} \end{pmatrix}$

The slope of the indifference curve at point A is equal to

The expected utility of lottery $B = \begin{pmatrix} 10 & 10 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ is

The slope of the indifference curve at point B is equal to

$$U'(m) = \frac{1}{m}$$
At point A $\frac{P}{1-p} \frac{U'(10)}{U'(40)} = \frac{1}{2} \frac{10}{\frac{1}{40}} = \frac{1}{2}$

$$\frac{1}{40} \frac{1}{2} \frac{1}{10} 40 = \frac{1}{2} 4 = 2$$
At point B slope of ind. curve in absolute value is
$$\frac{P}{1-p} \cdot \frac{U'(10)}{U'(10)} = \frac{1}{2}$$

 $\frac{\rho}{1-\rho} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$

1

DEMAND SIDE OF INSURANCE

W = 40,000, L = 5,000, probability of loss $p = \frac{1}{50}, U(m) = \ln(m)$ $M = \begin{pmatrix} 35,000 & 40,000 \\ \frac{1}{50} & \frac{49}{50} \end{pmatrix} \mathbb{E}[U(NI)] = \frac{1}{50} \mathcal{L}_{n} (35,000) + \frac{49}{50} \mathcal{L}_{u} (40,000)$ Suppose the consumer is offered $A = (h_{A} = 200, d_{A} = 0)$ which would yield a profit of $\pi_A = 200 - \frac{1}{50} 5000 = 100$ Would she purchase it? $A = \begin{pmatrix} 39,800\\ 1 \end{pmatrix} \quad E[U[A]] = \ln (39,800] = 10.59/6$ A is below the reservation indifference anno Suppose the consumer is offered $B = (h_B = 50, d_B = 100)$. $\mathbb{E}[U(B)] = \frac{1}{50} l_{u} (40,000 - 50 - 100) + \frac{49}{50} l_{u} (40,000 - 50) =$ 10.5953 B is above res. ind. where $\pi_B = 50 - \frac{1}{50} \left(5000 - 100 \right) = -48$

So we must exclude points that are below the indifference curve that goes through NI, called the **reservation indifference curve,** and exclude all those that are above the zero-profit line. The only observable contracts are:

