MONEY LOTTERIES

Measuring risk aversion

1x

 $l_{u}(x) l_{u}(x+1) etc$

How to identify risk aversion: U''(x) < 0

Can there be more or less risk aversion?

Even the same utility function, the degree of risk aversion of an individual varies with

 $\begin{pmatrix} -50 & 50 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} W_0 - 50 & W_0 + 50 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = L$ her level of wealth. $E \Gamma L T = W_{o}$ $U(x) = \sqrt{x}$. Initial wealth: W_0 .

What is the **risk premium** associated with this lottery? It depends on W_0 .

Suppose that
$$W_0 = 50$$

 $L_1 = \begin{pmatrix} 0 & 100 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
 $E \begin{bmatrix} U(L_1) \end{bmatrix} = \frac{1}{2} \sqrt{0} + \frac{1}{2} \sqrt{100} = \frac{1}{2} 0 + \frac{1}{2} \sqrt{10} = 5$
Solution to $\sqrt{50 - R_1} = 5$
 $E \begin{bmatrix} U(L_1) \end{bmatrix}$

 $R_{1} = 25

Suppose that Suppose that $W_0 = 1,000$	$L_{z} = \begin{pmatrix} 950 & 1,050 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
risk premium: Solution to	$E[V[L_2]] = \frac{1}{2}\sqrt{950} + \frac{1}{2}\sqrt{1050}$
	= 31.613 31.613 EEV(2) $R_{L} = 0.625

Thus she is less risk averse when her wealth is \$1,000 than when her wealth is \$50.

We compared two related lotteries given some fixed preferences (i.e. a fixed utility function).

Now fix a lottery *L* and consider different preferences (that is, different utility functions).

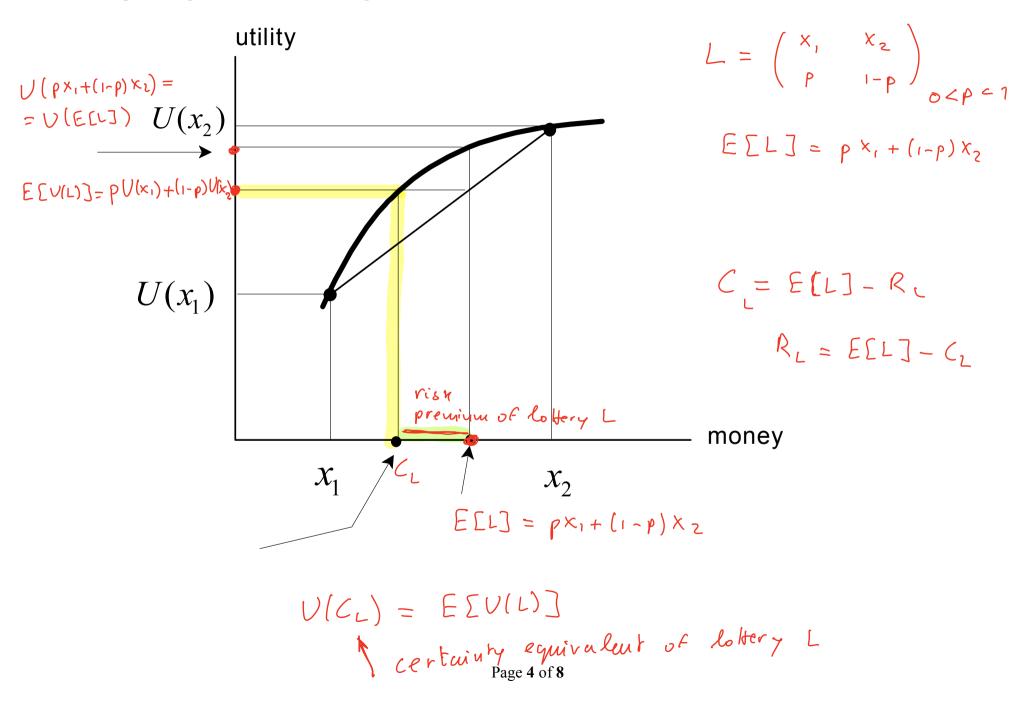
Take the risk premium of the lottery as a measure of the intensity of risk aversion.

Initial wealth: 50. Wealth lottery:
$$L = \begin{pmatrix} 0 & 100 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 $\mathbb{E}[L] = 50$ chauge it to
 $7\sqrt{x} + 8$
• $U(x) = \sqrt{x}$ then, as we saw before, the risk premium is the solution to
 $\sqrt{50-R} = \underbrace{5}_{=\mathbb{E}[U(L)]}$ which is $R = \$25$
• If her utility function is $U(x) = \ln(x+1)$ $E[U(L)] = \frac{1}{2} l_u(1) + \frac{1}{2} l_u(10)$
 $l_u(50 - R_L + 1) = 2.3076$
 $R_L = 440.95$

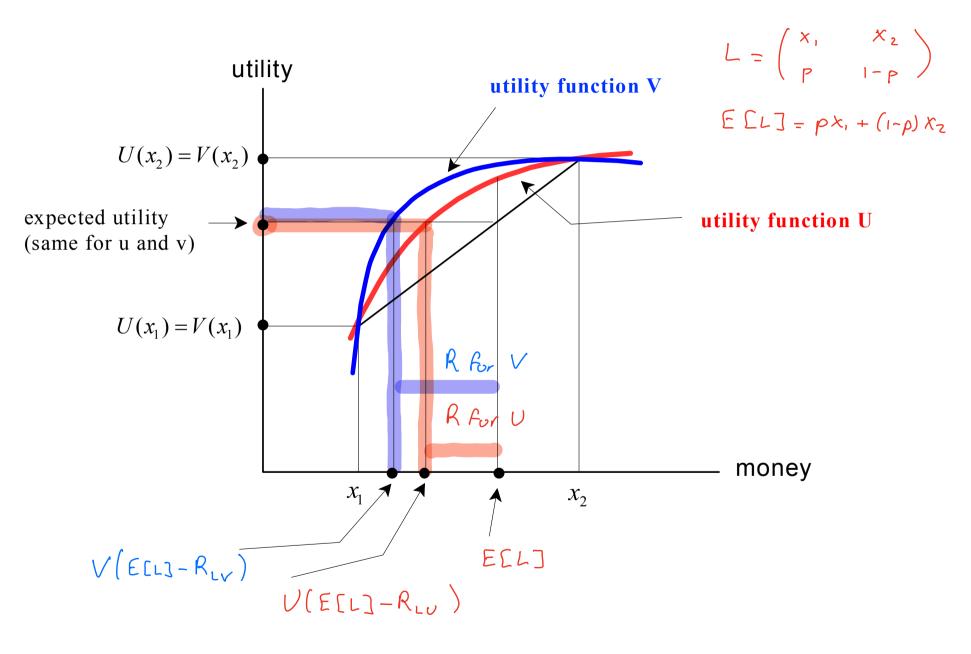
Thus the utility function $\ln(x+1)$ embodies more risk aversion then the function \sqrt{x} relative to lottery $\begin{pmatrix} 0 & 100 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$. But perhaps there is another lottery relative to which the function \sqrt{x} displays more (or the same) risk aversion than the utility function $\ln(x+1)$?

RISK AVERSE PERSON

Graphical representation of the risk premium:



A more concave utility function is associated with a larger risk premium for the same lottery:



Page 5 of 8

(2) Check that the risk premium is a meaningful measure, that is, that it is invariant to an allowed transformation of the utility function.

$$L = \begin{pmatrix} \$x_{1} & \$x_{2} & \dots & \$x_{n} \\ p_{1} & p_{2} & \dots & p_{n} \end{pmatrix}, \quad \mathbb{E}[L] = p_{1}x_{1} + p_{2}x_{2} + \dots + p_{n}x_{n}$$
Utility function $U(\$x)$. $\mathbb{E}[U(L)] = p_{1}U(x_{1}) + p_{2}U(x_{2}) + \dots + p_{n}U(x_{n})$

$$R_{UL} \text{ solution to } \bigcup (\mathbb{E}[L] - R) = \mathbb{E}[U(L)]$$
Now let $V(x) = aU(x) + b$ with $a > 0$

$$P_{1}V(x_{1}) + P_{2}V(x_{2}) + \dots + p_{n}V(x_{n})$$

$$R_{UL} \text{ solution to } \bigvee (\mathbb{E}[L] - R) = \mathbb{E}[V(L)]$$

$$Q \cup (\mathbb{E}[L] - R) + b$$

$$P_{1}(a \cup (x_{1}) + b) + P_{2}(a \cup (x_{2}) + b) + \dots + p_{n}(a \cup (x_{n}) + b)$$

$$P_{1}(a \cup (x_{1}) + b) + P_{2}(a \cup (x_{2}) + b) + \dots + p_{n}(a \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

$$P_{1}(A \cup (x_{1}) + b) + P_{2}(A \cup (x_{1}) + b) + \dots + p_{n}(A \cup (x_{n}) + b)$$

 $V(\mathbb{E}[L]-R) = \mathbb{E}[V(L)]$ if and only if $U(\mathbb{E}[L]-R) = \mathbb{E}[U(L)]$. Hence $R_{VL} = R_{UL}$

Definition. Utility function U embodies more risk aversion that utility function V if $R_{UL} > R_{VL}$ for every non-degenerate money lottery L.

Short of trying every possible lottery, is there a way to determine if *U* embodies more risk aversion than *V*?

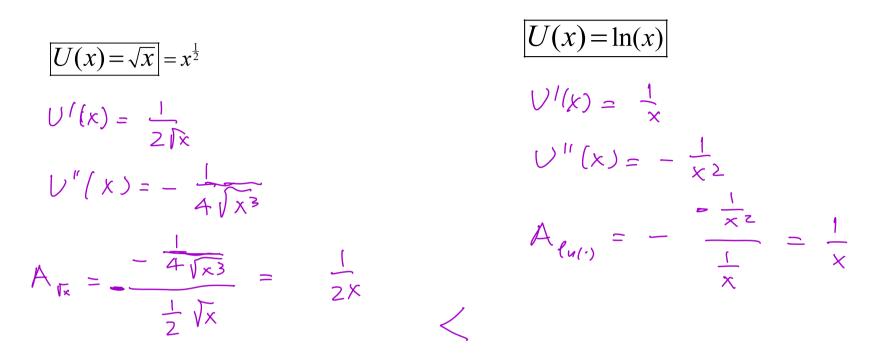
Arrow-Pratt measure of risk aversion:

$$A = - \frac{\overline{U''(x)}}{\underline{U''(x)}} > 0$$

First, let us verify that it is a meaningful measure, that is, that it is invariant to an allowed transformation of the utility function

Let
$$V(x) = aU(x) + b$$
 for every $x \ge 0$ with $a \ge 0$. $V'(x) =$ and $V''(x) =$
 $\bigvee^{l}(x) = c \cup^{l}(x)$ $-\frac{\bigvee^{q}(x)}{\bigvee^{r}(x)} = -\frac{\swarrow^{l}(y''(x))}{\swarrow^{r}(x)} = -\frac{\bigcup^{r}(x)}{\bigcup^{r}(x)}$
 $\bigvee^{r'}(x) = c \cup^{r'}(x)$
Page 7 of 8
 A_{V}

Examples.



Note that both display decreasing risk aversion as x increases

Theorem. Let U(x) and V(x) be two strictly concave functions. Then the following conditions are equivalent:

1. $R_{VL} > R_{UL}$ for every non-degenerate wealth lottery L

2.
$$A_V(x) > A_U(x)$$
 for every $x > 0$.
 $-\frac{\sqrt{(x)}}{\sqrt{(x)}} - \frac{\sqrt{(x)}}{\sqrt{(x)}}$ Page 8 of 8