




Restating attitudes to risk in terms of utility 
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Risk neutrality: straight line 
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Risk loving: strictly convex 
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Mixture of attitudes: 

 

 



A function U(x) is strictly concave if and only if   .  
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A function U(x) is strictly convex if and only if  

Examples: 
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A function U(x) is has a straight-line graph if and only if   
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Measuring risk aversion 

How to identify risk aversion: ( ) 0U x    

Can there be more or less risk aversion?  

Even the same utility function, the degree of risk aversion of an individual varies with 

her level of wealth.  

( )U x x . Initial wealth: 0W .       
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What is the risk premium associated with this lottery? It depends on 0W .   

Suppose that 0 50W     
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Suppose that Suppose that 0 1,000W    

 

 

 

 

 

 

 

Thus she is less risk averse when her wealth is $1,000 than when her wealth is $50. 

We compared two related lotteries given some fixed preferences (i.e. a fixed utility 

function).  
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Now fix a lottery L and consider different preferences (that is, different utility 

functions).  

Take the risk premium of the lottery as a measure of the intensity of risk aversion.  

Initial wealth: 50.    Wealth lottery:   1 1
2 2
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 If her utility function is ( ) ln( 1)U x x    

 

 

Thus the utility function ln(x+1) embodies more risk aversion then the function x  relative to 

lottery 1 1
2 2
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. But perhaps there is another lottery relative to which the function x  displays 

more (or the same) risk aversion than the utility function ln(x +1)? 
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Graphical representation of the risk premium: 
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A more concave utility function is associated with a larger risk premium for the same lottery: 

 

money

expected utility
(same for u and v)

utility function V

utility function U

1 1( ) ( )U x V x

2 2( ) ( )U x V x

2x1x

utility

 

  



Page 6 of 8 
 

(2) Check that the risk premium is a meaningful measure, that is, that it is invariant 

to an allowed transformation of the utility function. 
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 solution to  ULR   
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Definition. Utility function U embodies more risk aversion that utility function V if  

UL VLR R  for every non-degenerate money lottery L. 

Short of trying every possible lottery, is there a way to determine if U embodies more 

risk aversion than V? 

Arrow-Pratt measure of risk aversion: 

 

 

First, let us verify that it is a meaningful measure, that is, that it is invariant to an allowed 

transformation of the utility function  

Let ( ) ( )V x aU x b   for every 0x   with a > 0. ( )    and   ( )( ) ( )aU x aUV x V x x      
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Examples. 
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Note that both display decreasing risk aversion as x increases 

Theorem. Let U(x) and V(x) be two strictly concave functions. Then the following 

conditions are equivalent: 

1. VL ULR R  for every non-degenerate wealth lottery L 

2. ( ) ( )V UA x A x   for every x > 0. 


