(5) Find the full-insurance contract, call it *F*, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.

GNY isoprofit line

(6) Calculate the slope of the isoprofit line through C in the wealth diagram.

$$-\frac{P}{I-P} = -\frac{\frac{1}{12}}{\frac{11}{12}} = -\frac{1}{11}$$

(7) Calculate the equation of the isoprofit line through C in the wealth diagram.

$$W_{2} = a - \frac{1}{11} W_{1} \qquad a^{?}$$

$$1550 = a - \frac{1}{11} 1430$$

$$a = 1,680$$

$$W_{2} = 1,680 - \frac{1}{11} W_{1}$$

$$Verify \quad that \quad His \quad line \quad goes \quad through$$

$$also \quad points \quad D \quad and \quad F$$

$$F \quad Checn \quad that \quad 1540 = 1680 - \frac{1}{11} 1540$$

For

(8) Next prove that given two contracts $A = (h_A, d_A)$ and $B = (h_B, d_B)$, $\pi(A) = \pi(B)$ if and only if the expected value of the wealth lottery (for the insured) corresponding to contact A is equal to the expected value of the wealth lottery (for the insured) corresponding to contact B FOR A RISK-NEUTRAL

$$A = \begin{pmatrix} W-hA & W-hA-dA \\ 1-P & P \end{pmatrix} B = \begin{pmatrix} PERSON & the indifference \\ Consumer's point of view : Chrve through A and B \\ coincides with the isoprofix \\ Bine through A and B \\ B = \begin{pmatrix} W-hB & W-hB-dB \\ 1-p & P \end{pmatrix}$$

$$E[A] = (1-p)(W-h_A) + E[B] = (1-p)(W-h_B) + P(W-h_B-J_A) = P(W-h_B-J_B) + P(W-H$$

$$T(A) = h_A - p(L - d_A) = = T(B) = h_B - pL + pd_B$$

= $h_A - pL + pd_A$ if and only if $h_B - pL + pd_B$

$$h_{A} + pd_{A} = h_{B} + pd_{B}$$
(1)
Subtruct pL From both sides
$$h_{A} - pL + pd_{A} = h_{B} - pL + pd_{B}$$
(2)

What is the expected value of lottery O? Meaningless question .' What is the expected value of lottery D? Meaningless question .' Which of the two lotteries is better?

EXPECTED UTILITY THEORY Dasic outcomes. $\gamma \begin{pmatrix} z_1 & z_2 & z_3 & \dots & z_m \\ 0 & 1 & 0 & 0 \end{pmatrix} \sim z_2$ For every $i \in \{1, 2, \dots, m\}$ $Z = \{z_1, z_2, ..., z_m\}$ set of basic outcomes. A lottery is a probability distribution over Z: $L = \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ p_1 & p_2 & \dots & p_m \end{pmatrix} \quad \begin{array}{l} o \leq P_i \leq 1 \\ P_i + P_2 + \cdots + P_m = 1 \end{array}$ Let *L* be the set of lotteries. Suppose that the agent has a ranking \geq of the elements of *L*: if $L = \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$ and $M = \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ q_1 & q_2 & \dots & q_m \end{pmatrix}$ then $L \succ M$ means that L is considered to be better $\begin{pmatrix} 2_1 & 2_2 & 2_3 & \dots & 2_m \\ \frac{1}{3} & 2_3 & \dots & 0 \end{pmatrix}$ $\sim \begin{pmatrix} 2_1 & 2_2 \\ 1 & 2 \\ 2 & - \end{pmatrix}$ than M L-M means that fference
L is considered to be just
as good as M ind fference

Rationality constraints on \gtrsim (von Neumann-Morgenstern axioms):

. . .

$$Z = \begin{cases} Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5} \end{cases}$$

$$best Z_{4} \qquad Z_{best}$$

$$Z_{4} > Z_{1} > Z_{2} \sim Z_{5} > Z_{3}$$

$$Uorst Z_{3} \qquad Z_{worst}$$

Axiom: if
$$L = \begin{pmatrix} Z_{best} & Z_{worst} \\ P & 1-P \end{pmatrix}$$

 $M = \begin{pmatrix} Z_{best} & Z_{worst} \\ q & 1-q \end{pmatrix}$ $L > M$ if and
only if $p > q$

Lin Lis at least as good as M

Theorem 1 Let $Z = \{z_1, z_2, ..., z_m\}$ be a set of basic outcomes and L the set of lotteries over Z. If \succeq satisfies the von Neumann-Morgenstern axion \mathbb{Z} then there exists a function $U: \mathbb{Z} \to \mathbb{R}$, called a von Neumann-Morgenstern utility function, that assigns a number to every basic outcome and is such that, for any two lotteries $L = \begin{pmatrix} z_1 & z_2 & ... & z_m \\ p_1 & p_2 & ... & p_m \end{pmatrix}$ and $M = \begin{pmatrix} z_1 & z_2 & ... & z_m \\ q_1 & q_2 & ... & q_m \end{pmatrix}, \implies \begin{pmatrix} \mathcal{U}(z_1) & \mathcal{U}(z_2) & ... & \mathcal{U}(z_m) \\ \neg_1 & \gamma_2 & \neg_m \end{pmatrix}$ $\begin{pmatrix} \mathcal{U}(z_1) & \mathcal{U}(z_2) & ... & \mathcal{U}(z_m) \\ \neg_1 & \gamma_2 & \neg_m \end{pmatrix}$ $L \succ M$ if and only if $\underbrace{p_1 \mathcal{U}(z_1) + p_2 \mathcal{U}(z_2) + ... + p_m \mathcal{U}(z_m)}_{\text{expected utility of lottery }L} \ge \underbrace{q_1 \mathcal{U}(z_1) + q_2 \mathcal{U}(z_2) + ... + q_m \mathcal{U}(z_m)}_{\text{expected utility of lottery }M}$

and

$$L \sim M$$
 if and only if $\underbrace{p_1 U(z_1) + p_2 U(z_2) + ... + p_m U(z_m)}_{I = 0} = \underbrace{q_1 U(z_1) + q_2 U(z_2) + ... + q_m U(z_m)}_{I = 0}$

expected utility of lottery L

expected utility of lottery M

2.25 3.33

EXAMPLE 1.
$$Z = \{z_1, z_2, z_3, z_4\}$$
 $L = \begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8} \end{pmatrix}$ $M = \begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6} \end{pmatrix}$
Suppose we know that $U = \begin{cases} z_1 & z_2 & z_3 & z_4 \\ 6 & 2 & 8 & 1 \end{cases}$
Then
 $\mathbb{E}[U(L)] = \frac{1}{8} \cdot 6 + \frac{5}{8} \cdot 2 + \mathcal{O} \cdot 8 + \frac{2}{8} + 2 \cdot 2 \cdot 5 \\ \mathbf{A} \qquad \mathbf{Sb} \qquad \mathbf{M} \geq \mathbf{L}$

$$\mathbb{E}[U(M)] = \frac{1}{6} \cdot 6 + \frac{2}{6} \cdot 2 + \frac{1}{6} \cdot 8 + \frac{2}{6} \cdot 1 = 3.33$$

EXAMPLE 2.

$$A = \begin{pmatrix} \text{paid } 3\text{-week vacation no vacation} \\ 50\% & 50\% \end{pmatrix} \qquad B = \begin{pmatrix} \text{paid } 1\text{-week vacation} \\ 100\% \end{pmatrix}$$

Suppose Ann says $\boxed{B \succ A}$ How would she rank
$$C = \begin{pmatrix} \text{paid } 3\text{-week vacation no vacation} \\ 5\% & 95\% \end{pmatrix} \text{ and } D = \begin{pmatrix} \text{paid } 1\text{-week vacation no vacation} \\ 10\% & 90\% \end{pmatrix},$$

$$|S \text{ it rational to say } B \succ A$$

$$Guid C \succ D$$