(5) Find the full-insurance contract, call it F, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.

$$
\mathrm{W}=1600 \quad \mathrm{~L}=360 \quad \mathrm{p}=1 / 12
$$

Guy isoprofit line
(6) Calculate the slope of the isoprofit line through C in the wealth diagram.

$$
-\frac{p}{1-p}=-\frac{\frac{1}{12}}{\frac{11}{12}}=-\frac{1}{11}
$$

$$
\begin{aligned}
& \mathrm{W}_{2} \\
& \mathrm{hC}=50, \mathrm{dC}=120 \\
& \pi(c)=50-\frac{1}{12}(360-120) \\
& =30 \\
& F=\left(h_{F}, 0\right) \\
& \Pi(F)=h_{F}-\frac{1}{12} 360 \\
& =h_{F}-30=30 \\
& h_{F}=60
\end{aligned}
$$

(7) Calculate the equation of the isoprofit line through C in the wealth diagram.

$$
\begin{aligned}
W_{2} & =a-\frac{1}{11} W_{1} \\
1550 & =a-\frac{1}{11} 1430 \\
a & =1,680 \\
W_{2} & =1,680-\frac{1}{11} W_{1}
\end{aligned}
$$

verify that this line goes through also points D and F
for F Check that $1540=1680-\frac{1}{11} 1540$
(8) Next prove that given two contracts $A=\left(h_{A}, d_{A}\right)$ and $B=\left(h_{B}, d_{B}\right)$, $\pi(A)=\pi(B)$ if and only if the expected value of the wealth lottery (for the insured) corresponding to contact A is equal to the expected value of the wealth lottery (for the insured) corresponding to contact B FOR A RISk-NEUTRAL $P \in R S O N$ the indifference
Consumer's point of view: curve through A and B coincides with the isoprofir

A

$$
\begin{gathered}
A=\left(\begin{array}{cc}
W-h_{A} & W-h_{A}-d_{A} \\
1-p & p
\end{array}\right) B= \\
E[A]=(1-p)\left(W-h_{A}\right)+ \\
p\left(W-h_{A}-d_{A}\right)= \\
W-(1-p) h_{A}-p h_{A}-p d_{A} \\
=W-h_{A}-p d_{A}
\end{gathered}
$$

$$
\begin{array}{ll}
\Pi(A)=h_{A}-p\left(L-d_{A}\right)= & = \\
=h_{A}-p L+p d_{A} \quad \text { if and only if }
\end{array}
$$

$$
\begin{equation*}
h_{A}+p d_{A}=h_{B}+p d_{B} \tag{1}
\end{equation*}
$$

subtract $P L$ from bor sides

$$
\begin{equation*}
h_{A}-p L+p d_{A}=h_{B}-p L+\rho d_{B} \tag{2}
\end{equation*}
$$

operation $O=\left(\begin{array}{cc}\text { cured } & \begin{array}{c}\text { permanent } \\ \text { disability } \\ 90 \%\end{array} \\ 10 \%\end{array}\right)$
drug treatment $D=\left(\begin{array}{ccc}\text { cured } & \begin{array}{c}\text { no } \\ \text { benefit }\end{array} & \begin{array}{c}\text { adverse } \\ \text { reaction }\end{array} \\ 75 \% & 10 \% & 15 \%\end{array}\right)$

What is the expected value of lottery 0 ?

 meaningless question.What is the expected value of lottery D? meaningless question!
Which of the two lotteries is better?

$$
\begin{aligned}
& m=4 \\
& z=\left\{\begin{array}{c}
z_{1} \quad z_{2} \\
\text { cured, permanent disability, advese reaction todrus, } \\
\text { status quo } \\
z_{4}
\end{array}\right.
\end{aligned}
$$

EXPECTED UTILITY THEORY
$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \quad$ set of basic outcomes.

$$
\rightarrow\left(\begin{array}{ccccc}
z_{1} & z_{2} & z_{3} & \cdots & z_{m} \\
0 & 1 & 0 & 0
\end{array}\right) \sim z_{2}
$$

For every $i \in\{1,2, \ldots, n\}$
A lottery is a probability distribution over $Z: \quad L=\left(\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{m} \\ p_{1} & p_{2} & \cdots & p_{m}\end{array}\right) \quad 0 \leq p_{i} \leq 1$

$$
P_{1}+P_{2}+\cdots+P_{m}=1
$$

Let L be the set of lotteries. Suppose that the agent has a ranking \succsim of the elements of L :
if $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ q_{1} & q_{2} & \ldots & q_{m}\end{array}\right)$ then
preference
$L \succ M$ means that L is considered to be better than M
$L \sim M$ means that
indifference

$$
\begin{aligned}
& \left(\begin{array}{cccc}
z_{1} & z_{2} & z_{3} & \ldots \\
\frac{1}{3} & \frac{z_{m}}{3} & 0 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
z_{1} & z_{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right)
\end{aligned}
$$

L is considered to be just

$$
\text { us good us } M
$$

Rationality constraints on \approx (vol Neumann-Morgenstern axioms):

$$
\begin{aligned}
& Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\} \\
& z_{4}>z_{1}>z_{2} \sim z_{5}>z_{3} \left\lvert\, \begin{array}{cc}
\text { best } & z_{4} \\
z_{1} & z_{\text {best }} \\
z_{2}, z_{5} & \\
\text { worst } z_{3} & z_{\text {worst }}
\end{array}\right.
\end{aligned}
$$

Axiom: if $L=\left(\begin{array}{cc}z_{\text {best }} & z_{\text {worst }} \\ p & 1-p\end{array}\right)$

$$
M=\left(\begin{array}{cc}
z_{\text {best }} & z_{\text {worst }} \\
q & 1-q
\end{array}\right) \quad L>M \text { if and }
$$

only if $p>q$

$$
L \gtrsim M \quad L \text { is at least us good us } M
$$

Theorem 1 Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ be a set of basic outcomes and L the set of lotteries over Z. If \succsim satisfies the vol Neumann-Morgenstern axioms then there exists a function $U: Z \rightarrow \mathbb{R}$, called a won Neumann-Morgenstern utility function, that assigns a number to every basic outcome and is such that, for any two lotteries $L=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{m} \\ p_{1} & p_{2} & \ldots & p_{m}\end{array}\right)$ and $M=\left(\begin{array}{cccc}z_{1} & z_{2} & \ldots & z_{m} \\ q_{1} & q_{2} & \ldots & q_{m}\end{array}\right) \rightarrow\left(\begin{array}{ccc}U\left(z_{1}\right) & U\left(z_{2}\right) & \ldots \\ q_{1} & q_{2} & U\left(z_{m}\right) \\ q_{m} & q_{m}\end{array} \quad C\left(\begin{array}{ccc}p_{1} & p_{2} & \ldots\end{array} p_{m}\right)\right.$.
$L \succ M \quad$ if and only if $\quad \underbrace{\left.p_{1} U\left(z_{1}\right)+p_{m} U\left(z_{2}\right)+\ldots+z_{m}\right)}_{\text {expected utility of lottery } L}>\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{2} U\left(z_{m}\right)}_{\text {expected difity of lottery } M}$
and
$L \sim M \quad$ if and only if $\underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots p_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } L}=\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } M}$

EXAMPLE 1. $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \quad L=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8}\end{array}\right) \quad M=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6}\end{array}\right)$
Suppose we know that $U=\left\{\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ 6 & 2 & 8 & 1\end{array}\right.$
Then

$$
\begin{aligned}
& \mathbb{E}[U(L)]=\frac{1}{8} \cdot 6+\frac{5}{8} \cdot 2+0 \cdot 8+\frac{2}{8} 1=2.25 \\
& \mathbb{E}[U(M)]=\frac{1}{6} \cdot 6+\frac{2}{6} \cdot 2+\frac{1}{6} \cdot 8+\frac{2}{6} 1=3 \cdot 33
\end{aligned}
$$

EXAMPLE 2.

$$
A=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
50 \% & 50 \%
\end{array}\right) \quad B=\binom{\text { paid 1-week vacation }}{100 \%}
$$

Suppose Ann says $B \succ A$ How would she rank

$$
\begin{gathered}
C=\left(\begin{array}{cc}
\begin{array}{c}
\text { paid } 3 \text {-week vacation } \\
5 \%
\end{array} & \left.\begin{array}{c}
\text { no vacation } \\
95 \%
\end{array}\right)
\end{array} \begin{array}{c}
\text { and } D=\left(\begin{array}{c}
\text { paid } 1 \text {-week vacation } \\
10 \%
\end{array}\right. \\
\text { Is it rat vacation } \\
90 \%
\end{array}\right) \text { ? } \\
\text { aud say } B>A \\
\text { aud } \quad C>D
\end{gathered}
$$

