PRACTICE EXAM for the SECOND MIDTERM: ANSWERS

1. (a) $U^{\prime}(x)=\frac{3}{125}-\frac{x}{500,000}$ and $U^{\prime \prime}(x)=-\frac{1}{500,000}<0$. Thus Jennifer is risk averse.
(b) $A(x)=-\frac{U^{\prime \prime}(x)}{U^{\prime}(x)}=\frac{1}{12,000-x}$. Thus $A(4,000)=\frac{1}{8.000}=0.000125$ and

$$
A(6,000)=\frac{1}{6.000}=0.000167
$$

(c) Jennifer's expected utility if she bets $\$ 2000$ is:

$$
\frac{3}{4}\left\{200-\left[12-\frac{6000+2000}{1000}\right]^{2}\right\}+\frac{1}{4}\left\{200-\left[12-\frac{6000-2000}{1000}\right]^{2}\right\}=172
$$

(d) If Jennifer does not bet her utility is:

$$
\left\{200-\left[12-\frac{6000}{1000}\right]^{2}\right\}=164
$$

(d) If Jennifer bets $\$ y$ her expected utility is:

$$
f(y) \equiv \frac{3}{4}\left\{200-\left[12-\frac{6000+y}{1000}\right]^{2}\right\}+\frac{1}{4}\left\{200-\left[12-\frac{6000-\mathrm{y}}{1000}\right]^{2}\right\}
$$

Jennifer will choose y to maximize $f(y)$. A necessary condition for this is that $f^{\prime}(y)=0$, i.e.

$$
\frac{3}{4}(-2)\left[12-\frac{6000+\mathrm{y}}{1000}\right]\left(-\frac{1}{1000}\right)+\frac{1}{4}(-2)\left[12-\frac{6000-\mathrm{y}}{1000}\right]\left(+\frac{1}{1000}\right)=0
$$

which gives $\quad y=3000$, that is, Jennifer will choose to bet $\$ 3000$.
(e) Her expected utility if she bets $\$ 3000$ is:

$$
\frac{3}{4}\left\{200-\left[12-\frac{6000+3000}{1000}\right]^{2}\right\}+\frac{1}{4}\left\{200-\left[12-\frac{6000-3000}{1000}\right]^{2}\right\}=173
$$

(f) If she bets the optimal amount of $\$ 3000$, her utility goes up, compared to not betting, by $(173-164)=9$.
(g) If the probability is 50%, then her expected wealth (whatever the stake) is her initial wealth. Since Jennifer is risk-averse, she will not want to bet, that is, she will choose $\mathrm{y}=0$.
2. (a) Let W_{0} be the initial wealth. Then $h=W_{0}-W_{2}$ and $d=W_{2}-W_{1}$. Replacing in the formula $h=p(\ell-d)+c$ we get $W_{0}-W_{2}=p \ell-p\left(W_{2}-W_{1}\right)+c$. Rearranging we get

$$
W_{2}=\frac{W_{0}-p \ell-c}{1-p}-\frac{p}{1-p} W_{1} .
$$

(b) The above is the equation of a straight line with slope $-\frac{p}{1-p}$, hence an isoprofit line.

Any two contracts on this isoprofit line, expressed as wealth lotteries, have the same expected value. Let F be the full-insurance contract on this line and C any partial insurance contract on this line. Then F guarantees the expected value of C for sure and thus, by risk aversion, the individual will strictly prefer F to C .
[A mathematically sophisticated student might suggest the following alternative proof, which - however - is less general because it assumes that the individual has vNM preferences,. Let U be a vNM utility-of-money function that represents the individual's preferences. If the individual chooses deductible $\mathrm{d} \geq 0$, her utility is (W denotes initial wealth):

$$
\mathrm{U}(\mathrm{~d})=\mathrm{p} \mathrm{U}(\mathrm{~W}-\mathrm{d}-\mathrm{h})+(1-\mathrm{p}) \mathrm{U}(\mathrm{~W}-\mathrm{h})=\mathrm{p} \mathrm{U}(\mathrm{~W}-\mathrm{d}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c})+(1-\mathrm{p}) \mathrm{U}(\mathrm{~W}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c}) .
$$

The individual will then choose d to maximize $\mathrm{U}(\mathrm{d})$. Necessary condition is that $U^{\prime}(d)=0$.

$$
\begin{aligned}
U^{\prime}(d) & =\mathrm{p} \mathrm{U}^{\prime}(\mathrm{W}-\mathrm{d}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c})(-1+\mathrm{p})+(1-\mathrm{p}) \mathrm{U}^{\prime}(\mathrm{W}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c}) \mathrm{p}= \\
& =\mathrm{p}(1-\mathrm{p})\left[\mathrm{U}^{\prime}(\mathrm{W}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c})-\mathrm{U}^{\prime}(\mathrm{W}-\mathrm{d}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c})\right] .
\end{aligned}
$$

This is equal to zero if and only if $U^{\prime}(W-p \ell+p d-c)=U^{\prime}(W-d-p \ell+p d-c)$. Since the individual is risk-averse, $\mathrm{U}^{\prime \prime}<0$, hence U^{\prime} is decreasing. It follows that the equality is satisfied if and only if $\mathrm{W}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c}=\mathrm{W}-\mathrm{d}-\mathrm{p} \ell+\mathrm{pd}-\mathrm{c}$ i.e. if and only if $\mathrm{d}=0$. Hence the individual will choose full insurance (= zero deductible).]
3. Let $X>_{F S D} Y$ mean that X dominates Y in the sense of first-order stochastic dominance.

Then the following and nothing else is true: $\mathrm{L}>_{\text {FSD }} \mathrm{M}, \mathrm{L}>_{\text {FSD }} \mathrm{N}$ and $\mathrm{M}>_{\text {FSD }} \mathrm{N}$
4. Let $L \rightarrow_{\text {MPS }} M$ mean that from L one can obtain M by applying a mean-preserving-spread (MPS) to L (or, equivalently, M is a mean-preserving-spread of L). Then the following and nothing else is true: $\mathrm{B} \rightarrow_{\mathrm{MPS}} \mathrm{C}$.

