THIRD MIDTERM EXAM: ANSWERS for VERSION 2

1. (a) (a.1) If $p=7.5$ then only qualities 5,6 and 7 will be offered for sale, thus only $\frac{3}{12}+\frac{1}{12}+\frac{5}{12}=\frac{3}{4}$ of the iPods are offered for sale. Hence 9,000 iPods. (a.2) $\left(\begin{array}{ccc}5 & 6 & 7 \\ \frac{3}{9} & \frac{1}{9} & \frac{5}{9}\end{array}\right)$.
(a.3) $1+\left(\frac{3}{9} 5+\frac{1}{9} 6+\frac{5}{9} 7\right)-7.5=-0.278-0.28$.
(b) (b.1) If $p=8.3$ then 100% of the iPods are offered for sale, that is, all 12,000 of them.
(b.2) $\left(\begin{array}{cccc}5 & 6 & 7 & 8 \\ \frac{3}{12} & \frac{1}{12} & \frac{5}{12} & \frac{3}{12}\end{array}\right)$.
(b.3) $1+\left(\frac{3}{12} 5+\frac{1}{12} 6+\frac{5}{12} 7+\frac{3}{12} 8\right)-8.3=-0.633$.
(c) (c.1) If $p=6.4$ then only qualities 5 and 6 will be offered for sale, thus only $\frac{3}{12}+\frac{1}{12}=\frac{1}{3}$ of the iPods are offered for sale. Hence 4,000 iPods. (c.2) $\left(\begin{array}{cc}5 & 6 \\ \frac{3}{4} & \frac{1}{4}\end{array}\right) \quad$ (c.3) $1+\left(5 \frac{3}{4}+6 \frac{1}{4}\right)-6.4=-0.15$
2. (a) Only the b types would buy. Thus expected profits are $1000\left(900-\frac{1}{40} 18000\right)=450,000$
(b) Only the b types would buy and they would all choose contract C. Thus expected profits are 450,000 as in case (c).
(c) Type a would choose contract A and type b would choose contract C. Thus expected profits are 450,000 from type b and $1000\left[300-\frac{1}{120}(18000-1800)\right]=165,000$ from type a, for total of 615,000.

3. (a.1)

(a.2) See below. The straight lines are the Agent's indifference curves and the curved lines are the Principal's indifference curves. The two indifference curves are tangent at contract B, while the Principal's indifference curve is less steep than the Agent's indifference curve at contract C :

(b) Pareto efficiency requires that the risk-averse party be guaranteed a fixed income. Thus the only Pareto efficient contract is contract B (which is on the 45° line for the Principal).
(c) From the Principal's point of view, contract A is the lottery $\left(\begin{array}{cc}2,800 & 2,400 \\ \frac{1}{5} & \frac{4}{5}\end{array}\right)$ whose expected utility is $\frac{1}{5} \sqrt{2,800}+\frac{4}{5} \sqrt{2,400}=49.77$, contract B is the sure lottery $\binom{2,500}{1}$ whose expected utility is $\sqrt{2,500}=50$ and contract C is the lottery $\left(\begin{array}{cc}4,000 & 2,000 \\ \frac{1}{5} & \frac{4}{5}\end{array}\right)$ whose expected utility is $\frac{1}{5} \sqrt{4,000}+\frac{4}{5} \sqrt{2,000}=48.43$. Thus the Agent ranks the contracts as follows: $B \succ A \succ C$.

