$$
\begin{array}{cc}
\text { ECN } 103 & \text { Professor Giacomo Bonanno } \\
\text { THIRD MIDTERM EXAM: } & \text { ANSWERS for VERSION } 1
\end{array}
$$

1. (a.1)

(a.2) See below. The straight lines are the Principal's indifference curves and the curved lines are the Agent's indifference curves. The two indifference curves are tangent at contract $C$, while the Agent's indifference curve is less steep than the Principal's indifference curve at contract $B$.

(b) Pareto efficiency requires that the risk-averse party be guaranteed a fixed salary. Thus the only Pareto efficient contract is contract $C$ (which is on the $45^{\circ}$ line for the Agent).
(c) From the Agent's point of view, contract $A$ is the lottery $\left(\begin{array}{cc}2,000 & 750 \\ \frac{1}{4} & \frac{3}{4}\end{array}\right)$ whose expected utility is $\frac{1}{4} \sqrt{2,000}+\frac{3}{4} \sqrt{750}=31.72$, contract $B$ is the lottery $\left(\begin{array}{cc}2,500 & 500 \\ \frac{1}{4} & \frac{3}{4}\end{array}\right)$ whose expected utility is $\frac{1}{4} \sqrt{2,500}+\frac{3}{4} \sqrt{500}=29.272$ and contract $C$ is the sure lottery
$\binom{1,000}{1}$ whose expected utility is $\sqrt{1,000}=31.623$. Thus the Agent ranks the contracts as follows: $A \succ C \succ B$.
2. (a) (a.1) If $p=2.5$ then only qualities 1 and 2 will be offered for sale, thus only $\frac{2}{10}+\frac{1}{10}=\frac{3}{10}$ of the iPhones are offered for sale. Hence 1,500 iPhones. (a.2) $\left(\begin{array}{ll}1 & 2 \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$. (a.3) $1+\left(\frac{2}{3} 1+\frac{1}{3} 2\right)-2.5=-1.167$.
(b) (b.1) If $p=4.3$ then $100 \%$ of the iPhones are offered for sale, that is, all 5,000 of them.
(b.2) $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ \frac{2}{10} & \frac{1}{10} & \frac{4}{10} & \frac{3}{10}\end{array}\right) . \quad$ (b.3) $1+\left(\frac{2}{10} 1+\frac{1}{11} 2+\frac{4}{10} 3+\frac{3}{10} 4\right)-4.3=-0.5$.
(c) (c.1) If $p=3.2$ then only qualities 1,2 and 3 will be offered for sale, thus only $\frac{2}{10}+\frac{1}{10}+\frac{4}{10}=\frac{7}{10}$ of the iPhones are offered for sale. Hence 3,500 iPhones. (c.2) $\left(\begin{array}{ccc}1 & 2 & 3 \\ \frac{2}{7} & \frac{1}{7} & \frac{4}{7}\end{array}\right)$. (c.3) $1+\left(1 \frac{2}{7}+2 \frac{1}{7}+3 \frac{4}{7}\right)-3.2=0.086$.
3. (a) Only the $b$ types would buy. Thus expected profits are $1000\left(600-\frac{1}{30} 12000\right)=200,000$.
(b) Only the $b$ types would buy and they would all choose contract $C$. Thus expected profits are 200,000 as in case (a).
(c) Type $a$ would choose contract $A$ and type $b$ would choose contract $C$. Thus expected profits are 200,000 from type $b$ and $1000\left[200-\frac{1}{60}(12000-1200)\right]=20,000$ from type $a$, for a total of 220,000.
