ECN 103 Professor Giacomo Bonanno SECOND MIDTERM EXAM: ANSWERS for VERSION 1

1. It must be that A dominates B in the sense of First-Order Stochastic Dominance. There are only two values of x and y that yield that: $x=\frac{17}{36}$ and $y=0$. Explanation: first of all, in order for B to be a lottery we need the probabilities to add up to 1 , which requires $x+y=\frac{17}{36}$ or $y=\frac{17}{36}-x$. Thus we have:

$$
\begin{gathered}
P_{A}:\left(\begin{array}{cccccc}
\$ 16 & \$ 18 & \$ 20 & \$ 34 & \$ 36 & \$ 40 \\
c d f_{A} & :\left(\begin{array}{c}
6 \\
36 \\
\frac{6}{36}
\end{array}\right. & \frac{6}{36} & \frac{18}{36} & 0 & \frac{3}{36} \\
36 & \frac{24}{36} & \frac{27}{36} & 1
\end{array}\right)=A \\
P_{B}:\left(\begin{array}{cccccc}
\$ 16 & \$ 18 & \$ 20 & \$ 34 & \$ 36 & \$ 40 \\
c d f_{B} & :\left(\frac{6}{36}\right. & x & \frac{1}{36} & y=\frac{17}{36}-x & \frac{3}{36} \\
\frac{9}{36} & \frac{9}{36}+x & \frac{7}{36}+x & \frac{24}{36} & \frac{27}{36} & 1
\end{array}\right)=B
\end{gathered}
$$

In order for A to dominate B in the sense of First-Order stochastic dominance, it cannot be that $x=0$, because then $c d f_{A}(\$ 20)=\frac{24}{36}>c d f_{B}(\$ 20)=\frac{7}{36}$. So it must be that $x>0$.
Then we have that $c d f_{A}(\$ 18)<c d f_{B}(\$ 18)$, which is fine, but we also need $c d f_{A}(\$ 20)=\frac{24}{36} \leq c d f_{B}(\$ 20)=\frac{7}{36}+x$ that is, $x \geq \frac{17}{36}$ and this, together with $x+y=\frac{17}{36}$ gives: $x=\frac{17}{36}$ and $y=0$.
2. First of all, we need the probabilities in lottery A to add up to $1: \frac{p}{2}+\frac{1}{20}+p+\frac{1}{4}=1$. Solving this equation we get that $p=\frac{7}{15}$ so that $A=\left(\begin{array}{cccc}\$ 30 & \$ 36 & \$ 45 & \$ 48 \\ \frac{7}{30} & \frac{1}{20} & \frac{7}{15} & \frac{1}{4}\end{array}\right)$. Two equations need to be satisfied in order for B to be a mean-preserving spread of A : the first ensures that the probabilities in lottery B add up to 1 and the second ensures that the expected value of B is equal to the expected value of $A: \quad x+y=\frac{1}{20}$ and $32 x+40 y=\frac{1}{20} 36$. [The second equation can also be written as follows, since $E[A]=41.8: \frac{7}{30} 30+32 x+40 y+\frac{7}{15} 45+\frac{1}{4} 48=41.8$.] [The solution is $x=y=\frac{1}{40}$.]
3. (a) Since $\mathbb{E}[A]=\frac{1}{5} 100+\frac{4}{5} 25=40$ and $\mathbb{E}[B]=\frac{1}{5} 4+\frac{4}{5} 49=40$, a risk-neutral person would be indifferent between A and B.
(b) No: we know that John would prefer $\$ 40$ for sure to either A or B, but we don't know how he would rank A versus B.
(c) Since $\mathbb{E}[U(A)]=\frac{1}{5} \sqrt{100}+\frac{4}{5} \sqrt{25}=2+4=6$ and $\mathbb{E}[U(B)]=\frac{1}{5} \sqrt{4}+\frac{4}{5} \sqrt{49}=\frac{2}{5}+\frac{28}{5}=6$ Amy is indifferent between A and B.
(d) and (e) See the following figures:

(f) The slope if the same at every point and equal to $-\frac{p}{1-p}=-\frac{\frac{1}{5}}{\frac{4}{5}}=-\frac{1}{4}$.
(g) $U^{\prime}(m)=\frac{1}{2 \sqrt{m}}$. The slope at A is $-\frac{U^{\prime}(100)}{U^{\prime}(25)}\left(\frac{p}{1-p}\right)=-\frac{\frac{1}{2 \sqrt{100}}}{\frac{1}{2 \sqrt{25}}} \frac{1}{4}=-\frac{1}{8}$ and the slope at B is $-\frac{U^{\prime}(4)}{U^{\prime}(49)}\left(\frac{p}{1-p}\right)=-\frac{\frac{1}{2 \sqrt{4}}}{\frac{1}{2 \sqrt{49}}} \frac{1}{4}=-\frac{7}{8}$.
(h) For a risk-neutral person it is $-\frac{p}{1-p}=-\frac{1}{4}$ and for Amy it is $-\frac{U^{\prime}(40)}{U^{\prime}(40)}\left(\frac{p}{1-p}\right)=-\frac{1}{4}$, the same.

