HOMEWORK \# 4 ANSWERS

Note: this was Question 7.10 in the textbook!

(a) Since the owner of a car of quality $\theta=3$ values the car at $\$ 2,400$, when $P=\$ 1,700$ she will not be willing to sell. Hence the answer is No.
(b) The owner of a car of quality $\theta=1$ values it at $\$ 800$ and the owner of a car of quality $\theta=2$ values it at $\$ 1,600$. Hence both qualities will be offered for sale. Thus the buyer faces the following lottery: $\left(\begin{array}{cc}\theta=1 & \theta=2 \\ \frac{3}{2} q & 1-\frac{3}{2} q\end{array}\right)$ whose expected utility is:
$\frac{3}{2} q \sqrt{9,025-1,700+1,000}+\left(1-\frac{3}{2} q\right) \sqrt{9,025-1,700+2,000}=$ $136.86 q+96.57-144.85 q=96.57-7.99 q$

The buyer will be willing to buy if $96.57-7.99 q \geq \sqrt{9025}=95$, that is, if $q \leq 0.1965$. So the answer is: Yes all the values of q less than or equal to 0.1965 .
(c) No. If $q \leq 0.1965$ then both qualities $\theta=1$ and $\theta=2$ are traded and if $q>0.1965$ then both qualities $\theta=1$ and $\theta=2$ are offered for sale, but buyers are not willing to buy.

