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Abstract

An information completion of an extensive game is obtained by extend-
ing the information partition of every player from the set of her decision
nodes to the set of all nodes. The extended partition satisfies Memory of
Past Knowledge (MPK) if at any node a player remembers what she knew
at earlier no des. It is shown that MPK c an b e satisfi ed in a game i f an d
only if the game is von Neumann (vN) and satisfies memory at decision
nodes (the restriction of MPK to a player’s own decision nodes). A game
is vN if any two decision nodes that belong to the same information set
of a player have the same number of predecessors. By providing an axiom
for MPK we also obtain a syntactic characterization of the said class of
vN games.

1 Introduction

The standard definition of extensive game (see, for example, Selten, 1975) spec-
ifies a player’s information only when it is her turn to move (that is, only at
her decision nodes), thus providing only a partial description of what the player
learns during any play of the game. For both conceptual and practical reasons
(see, for example, Battigalli and Bonanno, 1999, and van Benthem, 2001), it
may be desirable to express what a player knows also at nodes where she does
not have to move, that is, at nodes that belong to another player. For example,
one might want to model what information is (or can be) given to player i after
some other player has made a move, even if it is not player i’s turn to move. In
order to be able to do so one needs to add, for every player, a partition of the set

∗I am grateful to two anonymous referees for helpful comments and suggestions. A first
draft of this paper was presented at the XIV Meeting on Game Theory and Applications,
Ischia, July 2001.
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of all nodes, which — when restricted to that player’s decision nodes — coincides
with her initial information partition (thus preserving the original information
sets).1 In this paper we study one aspect of memory within the context of such
extended partitions.
In the philosophy literature the concept of memory has been identified with

the retention of past knowledge (see, for example, Malcolm, 1963 and Munsat,
1966). In accordance with this, we define Memory of Past Knowledge (MPK)
as the property that at any node the player remembers what she knew at earlier
nodes. This is a natural property to consider and, indeed, the restriction of it
to a player’s own decision nodes is implied by the notion of perfect recall, which
is routinely assumed in game theory. We show that MPK can be satisfied only
within the class of games that Kuhn (1953) calls von Neumann (vN) games.
An extensive game is vN if any two decision nodes of player i that belong to
the same information set of player i have the same number of predecessors. We
prove that a game satisfies MPK if and only if it is a vN game and, for each
player, the restriction of MPK to that player’s decision nodes is satisfied. We
call the latter property “Memory at Decision Nodes” (MDN).
We also show that an implication of MPK is that, at every stage of the

game, it is common knowledge among all the players that the play of the game
has reached that stage (if node x has k predecessors, that is, if the path from
the root to x has length k, then we say that x belongs to stage k). One can
think of the stage of the game as the number of units of time that have elapsed
since the beginning of the game. Thus MPK implies that the time is always
common knowledge among the players. In this respect vN games that satisfy
MPK are closely related to the synchronous systems studies in the computer
science literature, where the agents have access to an external clock (see, for
example, Halpern and Vardi, 1986).
In Section 3 we show that the proposed notion of memory on extended

partitions does indeed capture the interpretation of memory as retention of past
knowledge: we show that it is characterized by either of the following axioms:

1. If in the past the player knew φ then she knows now that in the past she
knew φ,

2. If the player knows φ now, then at every future time she will know that
in the past she knew φ.

Thus either axiom provides a syntactic characterization of the class of von
Neumann games that satisfy Memory at Decision Nodes.

1To avoid confusion, throughout the paper we use the expression “player i’s information
partition” to refer to the standard partition of i’s decision nodes. The elements of this partition
will always be referred to as “information sets”. On the other hand, player i’s partition of the
set of all nodes will be called “i’s extended partition” and its elements will be called “cells”.
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2 Extended partitions and Memory

We use the tree-based definition of extensive game, which is due to Kuhn (1953).
Since our analysis deals with the structure of moves and information, and is
independent of payoffs, we shall focus on extensive forms and follow closely the
definition given by Selten (1975). The first component of an extensive form is
a finite or infinite rooted tree hT,→, t0i where t0 denotes the root and, for any
two nodes t, x ∈ T , t → x denotes that t is the immediate predecessor of x
(or x is an immediate successor of t). For every node t it is assumed that the
number of immediate successors of t is finite (possibly zero). We denote by ≺
the transitive closure of→. Thus t ≺ x denotes that t is a predecessor of x or x
is a successor of t (that is, there is a path from t to x) and we use t - x to mean
that either t = x or t ≺ x. For example, in the extensive form of Figure 1 we
have that t → x and t ≺ z3. Let Z be the set of terminal nodes, that is, nodes
that have no successors and X = T\Z the set of decision nodes. For example,
in Figure 1, Z = {z1, z2, ..., z7} and X = {t0, t, t0, y, x, x0}.
The second component of an extensive form is a set of players N = {1, 2, ..., n}

and a partition {Xi}i∈N of the set of decision nodes X. For every player i ∈ N,
Xi is the set of decision nodes of player i. In the extensive form of Figure 1,
N = {1, 2}, the set of player 1’s decision nodes is X1 = {t0, y} and the set of
player 2’s decision nodes is X2 = {t, t0, x, x0}.
The third component is, for every player i ∈ N , an equivalence relation ∼i

⊆ Xi×Xi (that is, a binary relation that is reflexive, symmetric and transitive)
satisfying the following constraint: if t, t0 ∈ Xi and t ∼i t0 then the number
of immediate successors of t is equal to the number of immediate successors
of t0. The interpretation of t ∼i t0 is that player i cannot distinguish between
t and t0, that is, as far as she knows, she could be making a decision either
at node t or at node t0. The equivalence classes of ∼i partition Xi and are
called the information sets of player i. We denote by Hi the set of information
sets of player i. In the extensive form of Figure 1, ∼1= {(t0, t0), (y, y)} and
∼2= {(t, t), (t, t0), (t0, t), (t0, t0), (x, x), (x, x0), (x0, x), (x0, x0)} . Thus, for exam-
ple, player 2’s information sets are {t, t0} and {x, x0}, that is, H2 = {{t, t0} , {x, x0}}.
We use the graphic convention of representing an information set as a rounded
rectangle enclosing the corresponding nodes, if there are at least two nodes,
while if an information set is a singleton we do not draw anything around it.
Furthermore, since all the nodes in an information set belong to the same player,
we write the corresponding player only once inside the rectangle.
The fourth, and last, component of an extensive form is, for every player

i ∈ N , a choice partition, which, for each of her information sets, partitions
the edges out of nodes in that information set (that is, the set of ordered pairs
(t, x) such that t → x) into player i’s choices at that information set. If (t, x)
belongs to choice c we write t→c x. The choice partition satisfies the following
constraints: (1) if t→c x and t→c x

0 then x = x0, and (2) if t→c x and t ∼i t0
then there exists an x0 such that t0 →c x

0. The first condition says that a choice
at a node selects a unique immediate successor, while the second condition says
that if a choice is available at one node of an information set then it is available
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at every node in that information set. For example, in Figure 1, x →g z2
and x0 →g z4, so that player 2’s choice g is {(x, z2), (x0, z4)}. Graphically we
represent choices by labeling the corresponding edges in such a way that two
edges belong to the same choice if and only if they are assigned the same label.
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Figure 1

The main focus in game theory has been on games with perfect recall.2 An
extensive form is said to have perfect recall if “for every player i and for any
two information sets g and h of player i, if one vertex y ∈ h comes after a choice
c at g then every vertex x ∈ h comes after this choice c” (Selten, 1975; p. 319
of Kuhn, 1997). For example, the extensive form of Figure 1 satisfies perfect
recall (both x and x0 come after the same choice at the earlier information
set {t, t0} of player 2, namely choice d ). It is shown in Bonanno (2003) that
perfect recall is equivalent to the conjunction of two independent properties, one
expressing memory of past actions and the other memory of past knowledge. In

2The notion of perfect recall was introduced by Kuhn (1953), who interprets it as follows:
“this condition is equivalent to the assertion that each player is allowed by the rules of the
game to remember everything he knew at previous moves and all of his choices at those moves”
(p. 65 of Kuhn, 1997). In the computer science literature the expression “perfect recall” has
been used to denote a weaker property (see the next fotnote).
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this paper we focus on the latter. We call “Memory at Decision Nodes” (MDN)
the following property (which is a weakening of perfect recall): if one node in
information set h of player i has a predecessor that belongs to information set
g of the same player i, then every node in h has a predecessor in g.3 Formally
(recall that Hi denotes the set of information sets of player i):

if x ≺ y, x ∈ g ∈ Hi, y ∈ h ∈ Hi, and y0 ∈ h,
then there exists an x0 ∈ g such that x0 ≺ y0. (MDN)

This means that, when it is her turn to move, a player always remembers
what she knew at earlier decision nodes of hers. Note that this property is
considerably weaker than perfect recall, since it is independent of choices. For
example, if the extensive form of Figure 1 is modified in such a way that (t, x)
and (t0, y) belong to different choices of player 2,4 then it will still satisfyMDN
but it will violate perfect recall. In this paper we shall not assume perfect recall,
although we will restrict attention to extensive forms that satisfy the weaker
property MDN . Our purpose is to study an extension of this property from
the set of decision nodes of player i to the set of all the nodes. This requires
extending the notion of information set.

Definition 1 An information completion of an extensive form is an n-tuple
hK1, ...,Kni where, for each player i = 1, ..., n, Ki is a partition of the set of
nodes T that agrees on player i’s information sets, in the sense that if node t
belongs to information set h of player i then the cell of Ki that contains t −
denoted by Ki(t) − coincides with h. Formally: if t ∈ h ∈ Hi then Ki(t) = h.
We call Memory of Past Knowledge (MPK) the extension of MDN to the

extended partition Ki: ∀x, y, y0 ∈ T, ∀i ∈ N,
if x ≺ y and y0 ∈ Ki(y)
then there exists an x0 ∈ Ki(x) such that x0 ≺ y0. (MPK)

In Section 3 we show thatMPK does indeed correspond to the syntactic notion
of remembering what one knew in the past. In this section we prove thatMPK
can be only be satisfied in von Neumann extensive forms.
For every node t ∈ T , we denote by `(t) the number of predecessors of t (i.e.

the length of the path from the root to t). The following definition is taken from
Kuhn (1953; p. 52 of Kuhn, 1997).

Definition 2 An extensive form is von Neumann if, whenever t and x are
decision nodes of player i that belong to the same information set of player i,
the number of predecessors of t is equal to the number of predecessors of x.
Formally: ∀i ∈ N, ∀t, x ∈ T, if t, x ∈ h ∈ Hi then `(x) = `(t).

3This property was first studied in the game theory literature by Okada (1987, p. 89).
Ritzberger (1999, p. 77) calls it “strong ordering”, while Kline (2002, p. 288) calls it “occur-
rence memory”. An essentially identical property, called “no forgetting”, was introduced in
the computer science literature by Ladner and Reif (1986) and Halpern and Vardi (1986). It
was later renamed as ‘perfect recall’ in Fagin et al. (1995). See also van der Meyden (1994).

4For example, if choice c is {(t, z1), (t0, y)} and choice d is {(t, x), (t0, z7)}.
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The extensive form shown in Figure 1 is not von Neumann (since x and x0

belong to the same information set of player 2 and `(x) = 2 while `(x0) = 3),
while the one shown in Figure 2 is von Neumann.
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Figure 2

The proof of the following proposition requires several steps and is relegated
to Appendix A. For every integer k ≥ 0 we denote by T k the set of k-stage
nodes: T k = {t ∈ T : `(t) = k}.5

Proposition 3 Let G be an arbitrary extensive form and hK1, ...,Kni an infor-
mation completion of it that satisfies MPK. Then
(1) G is von Neumann, and
(2) For every t ∈ T, i ∈ N and k ≥ 0, if t ∈ T k then Ki(t) ⊆ T k.
Part (2) of Proposition 3 implies that at every node t it is common knowledge

among all the players that the play of the game has reached the stage k = `(t).
In fact, since Ki(t) ⊆ T k for all i, the cell of the common knowledge partition
containing t is also a subset of T k. Thus at every node the number of moves
made up to that point is common knowledge among all the players (although
some players may be uncertain as to what moves have been made).

The following result, due to Battigalli and Bonanno (1999), gives the con-
verse to Proposition 3.

Proposition 4 Let G be a von Neumann extensive form that satisfies property
MDN . Then there exists an information completion hK1, ...,Kni of it that
satisfies MPK.

5For example, in the game of Figure 2, T 1 = {t1, t2, t3}, T 2 = {z1, t4, t5, t6, t7, t8}, etc.
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Typically, there will be several information completions that satisfy MPK.
The finest of all such completions (capturing the maximum amount of infor-
mation that can be conveyed to the players, without violating memory) is ob-
tained as follows. First some notation. For every node t and for every player
i, let Hi(t) ⊆ Hi be the set of information sets of player i that are crossed by
paths starting at t: Hi(t) = {h ∈ Hi : t - y for some y ∈ h}. For example, in
the extensive form of Figure 2, H3(t1) = {{t4, t5}}, H3(t2) = {{t4, t5}, {t6, t7}},
H3(t3) = {{t6, t7}, {t8}}, H3(t4) = H3(t5) = {t4, t5}, etc. Next we introduce, for
every player i, a binary relation on T , denoted by ≈i. Let v,w ∈ T ; then v ≈i w
if and only if, either (1) v = w, or (2) `(v) = `(w) and Hi(v) ∩Hi(w) 6= ∅. For
example, in the extensive form of Figure 2, t1 ≈3 t2 and t2 ≈3 t3 but not t1 ≈3 t3
The relation ≈i is clearly reflexive and symmetric, but, in general, it is not tran-
sitive (as in the case of Figure 2). Let ≈∗i denote the transitive closure of ≈i.
Thus v ≈∗i w if and only if there exists a finite sequence of nodes {y1, y2, ..., ym}
such that y1 = v, ym = w and, for all k = 1, ...,m− 1, yk ≈i yk+1 . Then ≈∗i is
an equivalence relation on T . Let Ki(t) be the equivalence class of t generated
by ≈∗i and Ki the set of equivalence classes, that is, Ki(t) = {v ∈ T : t ≈∗i v}
and Ki = {S ⊆ T : S = Ki(t) for some t ∈ T} . For example, in the extensive
form of Figure 2, K3(t0) = {t0}, K3(t1) = K3(t2) = K3(t3) = {t1, t2, t3},
K3(t4) = K3(t5) = {t4, t5}, etc. It is shown in Battigalli and Bonanno (1999)
that the information completion defined above is the finest completion that
satisfies MPK.

By Propositions 3 and 4, the class of vN games that satisfy property MDN
is precisely the class of games where there exists an information completion that
satisfies MPK.

By Proposition 3 an extensive form which is not von Neumann cannot have
an information completion that satisfies MPK, even if it satisfies MDN . We
illustrate this by means of the extensive form of Figure 1, which satisfies property
MDN . Consider an information completion K2 for player 2. Since information
completions preserve information sets, it must be that K2(t) = K2(t0) = {t, t0}
and K2(x) = K2(x0) = {x, x0}. By MPK, since y ≺ x0 and x ∈ K2(x0) there
must be a node v ∈ K2(y) such that v ≺ x. The only predecessors of x are t and
t0.We cannot have t ∈ K2(y), since that would imply (by definition of partition)
that y ∈ K2(t), contradicting the fact that K2(t) = {t, t0}. On the other hand, if
t0 ∈ K2(y) then, since t0 ≺ y and t0 ∈ K2(y), MPK would require the existence
of a v ∈ K2(t0) such that v ≺ t0. But K2(t0) = {t, t0}.

3 Syntactic Characterization of Memory

In this section we provide a syntactic characterization of MPK. We interpret
the precedence relation ≺ as a temporal relation and associate with it the stan-
dard past and future operators from basic temporal logic (see, for example,
Prior, 1956, Burgess, 1984, or Goldblatt, 1992). To the extended partition Ki
of player i we associate a knowledge operator for player i.
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Given an extensive form and an information completion of it, by frame we
mean the collection hT,≺, {Ki}i∈Ni where T is the set of nodes, ≺ the prece-
dence relation on T and Ki is player i’s extended partition of T .
We consider a propositional language with the following modal operators:

the temporal operators G and H and, for every player i, the knowledge operator
Ki. The intended interpretation is as follows:

Gφ : “it is Going to be the case at every future time that φ”
Hφ : “it Has always been the case that φ”
Kiφ : “player i Knows that φ”.

The formal language is built in the usual way from a countable set S of
atomic propositions, the connectives ¬ (for “not”) and ∨ (for “or”) and the
modal operators.6 Let Pφ

def
= ¬H¬φ. Thus the interpretation is:

Pφ : “at some Past time it was the case that φ”.

Given a frame hT,≺, {Ki}i∈Ni one obtains a model based on it by adding a
function V : S → 2T (where 2T denotes the set of subsets of T ) that associates
with every atomic proposition q ∈ S the set of nodes at which q is true. Given
a model and a formula φ, the truth set of φ - denoted by V (φ) - is defined as
usual. In particular,

V (Gφ) = {t ∈ T : ∀t0 ∈ T if t ≺ t0 then t0 ∈ V (φ)},
V (Hφ) = {t ∈ T : ∀t00 ∈ T if t00 ≺ t then t00 ∈ V (φ)},
V (Kiφ) = {t ∈ T : Ki(t) ⊆ V (φ)} .

An alternative notation for t ∈ V (φ) is t |= φ. A formula φ is valid in a model
if t |= φ for all t ∈ T , that is, if φ is true at every node. A formula φ is valid in
a frame if it is valid in every model based on it.
Finally, we say that a property of frames is characterized by an axiom if (1)

the axiom is valid in any frame that satisfies the property and, conversely, (2)
whenever the axiom is valid in a frame, then the frame satisfies the property.

The following proposition, which is proved in Appendix B, provides a char-
acterization of MPK.7

Proposition 5 MPK is characterized by either of the following axioms:

PKiφ→ KiPKiφ (M1)

6See, for example, Chellas (1984). The connectives ∧ (for “and”) and → (for ”if ... then”)

are defined as usual: φ ∧ ψ
def
= ¬(¬φ ∨ ¬ψ) and φ→ ψ

def
= ¬φ ∨ ψ.

7An alternative axiom for the property that we call ‘memory of past knowledge’ was sug-
gested by Ladner and Reif (1986): KiGφ → GKiφ. Halpern and Vardi (1986) provided a
sound and complete axiomatization of systems that satisfy ‘memory of past knowledge’ ( they
called this property ‘no forgetting’) and are synchronous (i.e. the agents have access to an
external clock). The key axiom is Ki ° φ → °Kiφ, where ° is the ‘next time’ operator,
that is, t |= °φ if φ is true at every immediate successor of t. As pointed out in Section 1,
synchronous systems are closely related to von Neumann games.
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Kiφ→ GKiPKiφ. (M2)

M1 says that if, at some time in the past, player i knew φ, then she knows
now that in the past she knew φ. WhileM1 is backward-looking,M2 is forward-
looking: it says that if player i knows φ now, then at every future time she will
know that some time in the past she knew φ.
By Propositions 3 and 5, if an extensive form has an information completion

that validates axiom M1 then the extensive form is von Neumann and satisfies
propertyMDN . Conversely, by Propositions 4 and 5 , a von Neumann extensive
form that satisfies MDN has an information completion that validates axiom
M1. Thus axiom M1 provides a syntactic characterization of the class of von
Neumann games that satisfy MDN . The same is true of axiom M2.

4 Conclusion

An information completion of an extensive form is obtained by extending the
information partition of every player from the set of her decision nodes to the set
of all nodes. One can then define, for the extended partition, the following notion
of memory: at any node a player remembers what she knew at earlier nodes.
We showed that this property can be satisfied in an extensive form if and only if
the extensive form is von Neumann and satisfies the restriction of the property
to a player’s own decision nodes. We also provided two equivalent axioms for
the proposed notion of memory thus obtaining a syntactic characterization of
the said class of von Neumann games.

APPENDICES

A Proofs for Section 2

In this appendix we prove Proposition 3 of Section 2. For the reader’s conve-
nience we repeat the definition of MPK:

if t ≺ x and x0 ∈ Ki(x) then there exists a t0 ∈ Ki(t) such that t0 ≺ x0.

We say that at node x there is “time uncertainty” for player i if the cell
Ki(x) of her extended partition Ki contains a predecessor of x, that is, if there
is a path in the tree that crosses the cell of player i’s extended partition that
contains x more than once.8

Definition 6 At x ∈ T there is time uncertainty for player i if there exists a
t ∈ Ki(x) such that t ≺ x.

8When restricted to a player’s information sets, time uncertainty coincides with the notion
of absent-mindedness (cf. Piccione and Rubinstein, 1997, p.10 and Kline, 2002, p. 289).
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The following lemma states that in information completions that satisfy
MPK, time uncertainty “propagates into the past”.

Lemma 7 Fix an arbitrary extensive form and let hK1, ...,Kni be an informa-
tion completion of it that satisfies MPK. Then the following is true for every
node x and every player i: if at x there is time uncertainty for player i, then
there exists a t ∈ T such that (1) t ≺ x and (2) at t there is time uncertainty
for player i.

Proof. Let x and i be such that there exists a t ∈ Ki(x) with t ≺ x. By
MPK (letting x0 = t) there exists a t0 ∈ Ki(t) such that t0 ≺ t. Thus at t there
is time uncertainty for player i.

The following proposition says that MPK rules out time uncertainty.

Proposition 8 Fix an arbitrary extensive form and let hK1, ...,Kni be an infor-
mation completion of it that satisfies MPK. Then for every node x and every
player i there cannot be time uncertainty at x for player i.

Proof. Suppose that there is a node t1 and a player i at which there is time
uncertainty for player i. By Lemma 7 there is an infinite sequence ht1, t2, ...i
such that, for all k ≥ 1, tk+1 ≺ tk and at tk+1 there is time uncertainty for
player i. Since hT,≺i is a rooted tree, it has no cycles. Thus, for all j, k ≥ 1
with j 6= k, tj 6= tk, contradicting the fact that in a rooted tree every node has
a finite number of predecessors.

The following proposition states that a situation like the one illustrated in
Figure 3 (where rounded rectangles represent cells of Ki) is not compatible with
MPK.

t

.

t'

x'x

y'

i

i

Figure 3

Proposition 9 Let G be an arbitrary extensive form and hK1, ...,Kni an infor-
mation completion of it that satisfies MPK. Then the following is true for all
t, t0, x, x0, y0 ∈ T and i ∈ N :
if t→ x, t0 ∈ Ki(t), t0 → x0, x0 - y0, and y0 ∈ Ki(x), then y0 = x0.
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Proof. Suppose not. Then there exist t, t0, x, x0, y0 ∈ T and i ∈ N such that
t→ x (that is, t is the immediate predecessor of x), t0 ∈ Ki(t), t0 → x0 (that is,
t0 is the immediate predecessor of x0), y0 ∈ Ki(x) and x0 ≺ y0. Since t0 → x0, by
Proposition 8 it must be that

t0 /∈ Ki(x0) (1)

(otherwise there would be time uncertainty for player i at x0). It follows that

t /∈ Ki(x0). (2)

In fact, if it were the case that t ∈ Ki(x0), then we would have (by definition of
partition) that Ki(t) = Ki(x0) and, since t0 ∈ Ki(t), t0 ∈ Ki(x0), contradicting
(1). Since y0 ∈ Ki(x), Ki(y0) = Ki(x). Thus, since x ∈ Ki(x),

x ∈ Ki(y0). (3)

By MPK it follows from x0 ≺ y0 and (3) that there exists an x00 such that

x00 ∈ Ki(x0) (4)

and

x00 ≺ x. (5)

Since t is the immediate predecessor of x (t→ x), it follows from (5) that either
x00 = t, or x00 ≺ t. The case x00 = t yields a contradiction between (4) and (2).
Suppose, therefore, that x00 ≺ t. By MPK it follows from t0 → x0 and (4) that
there exists a t00 ∈ Ki(t0) such that t00 ≺ x00. From t0 ∈ Ki(t) and t00 ∈ Ki(t0) we
get (by definition of partition) that

t00 ∈ Ki(t). (6)

From t00 ≺ x00 and x00 ≺ t we get (by transitivity of ≺) that t00 ≺ t. This,
in conjunction with (6), yields time uncertainty at t for player i, contradicting
Proposition 8.

Proof of Proposition 3. Fix an arbitrary player i and an arbitrary node
x. Let k = `(x). First we prove part (2), namely that Ki(x) ⊆ T k. We do
this by induction. First of all, it must be that Ki(t0) = {t0} (where t0 is the
root of the tree). In fact, if there were a t 6= t0 with t ∈ Ki(t0), then we would
have Ki(t) = Ki(t0) and, since t0 ∈ Ki(t0), t0 ∈ Ki(t). Thus, since t0 ≺ t,
there would be time uncertainty at t for player i, contradicting Proposition 8.
Thus the statement is true for k = 0. Next we show that if it is true for all
k ≤ m then it is true for k = m + 1. Fix a node x ∈ Tm+1 and an arbitrary
y0 ∈ Ki(x). Then Ki(y0) = Ki(x). By the induction hypothesis, `(y0) ≥ m+1.9

9Suppose, to the contrary, that `(y0) = j with j < m+1. Then, by the induction hypothesis,
Ki(y0) ⊆ T j . Since x ∈ Ki(x) and Ki(x) = Ki(y0), x ∈ Ki(y0). Thus x ∈ T j , contradicting
the hypothesis that x ∈ Tm+1.
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Suppose that `(y0) > m + 1. Let t ∈ Tm be the immediate predecessor of x.
Since t → x and y0 ∈ Ki(x), by MPK there exists a t0 ∈ Ki(t) such that
t0 ≺ y0. By the induction hypothesis, Ki(t) ⊆ Tm and therefore t0 ∈ Tm. Let
x0 be the immediate successor of t0 on the path from t0 to y0. Since `(t0) = m,
`(x0) = m + 1. Thus, since `(y0) > m + 1, x0 6= y0. Thus we have that all of
the following are true, contradicting Proposition 9: t → x, t0 ∈ Ki(t), t0 → x0,
x0 - y0, y0 ∈ Ki(x) and y0 6= x0. Thus we have shown that for every player
i and node x, Ki(x) ⊆ T `(x), completing the proof of part (2) of Proposition
3. To prove part (1) it is sufficient to recall that, by definition of information
completion, if node x belongs to information set h of player i, then Ki(x) = h.
Thus the extensive form is von Neumann.

B Proofs for Section 3

Proof of Proposition 5. Assume MPK.We show that both (M1) and (M2)
are valid. For (M1): suppose that x |= PKiφ. Then there exists a t such that
t ≺ x and t |= Kiφ, that is, Ki(t) ⊆ V (φ). Fix an arbitrary x0 ∈ Ki(x). ByMPK
there exists a t0 ∈ Ki(t) such that t0 ≺ x0. Since t0 ∈ Ki(t), Ki(t0) = Ki(t) and,
therefore, since Ki(t) ⊆ V (φ), t0 |= Kiφ. Thus x

0 |= PKiφ and x |= KiPKiφ.
For (M2): suppose that t |= Kiφ. Fix arbitrary x and x0 such that t ≺ x
and x0 ∈ Ki(x). By MPK there exists a t0 ∈ Ki(t) such that t0 ≺ x0. Since
t0 ∈ Ki(t), Ki(t0) = Ki(t) and, therefore, t0 |= Kiφ. Thus x

0 |= PKiφ and
x |= KiPKiφ and t |= GKiPKiφ.
To prove the converse, assume thatMPK does not hold, that is, there exist

i ∈ N and t, x, x0 ∈ T such that all of the following hold:

t ≺ x (7)

x0 ∈ Ki(x) (8)

∀t0 ∈ T, if t0 ≺ x0 then t0 /∈ Ki(t). (9)

We want to show that both (M1) and (M2) can be falsified. Let q be an atomic
sentence and construct a model where V (q) = Ki(t). Then

t |= Kiq. (10)

For every t0 such that t0 ≺ x0, by (9) t0 /∈ Ki(t) = V (q) and therefore

t0 2 q. (11)

It follows from (11) that

t0 2 Kiq. (12)
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In fact, if it were the case that Ki(t0) ⊆ V (q) = Ki(t) then, since t0 ∈ Ki(t0)
we would have t0 |= q, contradicting (11). It follows from (12) that x0 2 PKiq.
Hence, by (8),

x 2 KiPKiq. (13)

By (7) and (10), x |= PKiq. This, together with (13), falsifies (M1) at x. By
(13) and (7), t 2 GKiPKiq. This, together with (10), falsifies (M2) at t.
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