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Abstract
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belief hierarchies) the Truth Axiom is stated locally as the hypothesis that no individual has any
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not hold in more general non-Bayesian models of decision-making under uncertainty.

We are grateful to an anonymous referee for detailed and helpful comments.

Corresponding author: Giacomo Bonanno, Department of Economics, University of California, One
Shields Avenue, Davis, CA 95616-8578, USA.
E-mail: gfbonanno@ucdavis.edu, Fax: 530 — 752 9382, Tel. 530 —-752 1574.



1. Introduction

The structures that are most often used in the economics and computer science literature to
discuss interactive beliefs/knowledge are partition structures '. Partition structures embody the S5
logic for individual beliefs, in particular the Truth Axiom, that is, the assumption that it is a
necessary truth (true in all possible worlds of the model) that no one has any false beliefs. As
Stalnaker (1994, 1996) points out there is an important conceptual difference between a theory that
builds S5 into the concept of knowledge (which —Stalnaker argues —is based on equivocating
between knowledge and belief) and a theory that describes epistemic conditions under which
knowledge and belief coincide, and then considers the consequences of assuming those conditions.
In the latter the Truth Axiom can be expressed locally (that is, as a property of the individuals’ belief
hierarchies) as the condition that no one has any false beliefs and that it is common belief that no one

has any false beliefs. Let T represent the event that no one has false beliefs and B, T the event that it
is common belief that no one has false beliefs (B, denotes the common belief operator). Then the
Truth Axiom holds locally for a given profile of belief hierarchies if and only if 7€ T m B, T, where

ris the true state of the model that represents those belief hierarchies; we will say that at zthe Truth

Condition 1s satisfied in this case.

In applications to game theory and economics (see, for example, Ben Porath, 1997, Morris,

1994, Stalnaker, 1994, 1996, Stuart, 1997) the crucial assumption is B, T, that is, common belief in

no error. How should this assumption be assessed? One could take the position that correctness of
probability-one beliefs is empirically highly plausible and that therefore common belief in no error is

a reasonable hypothesis. In this paper we propose an alternative view. Let T, be the event that
individual i has correct beliefs and B.T, the event that individual i believes that she has correct
beliefs (B, denotes the belief operator of individual 1); BT, will be referred to as the property of

secondary reflexivity of individual beliefs. For a single agent the assumption of secondary reflexivity
is not an empirical assumption but rather a logical property of beliefs: an individual cannot
coherently assign positive probability to the event that she assigns probability one to something

which is false. The assumption of common belief in no error (B, T) can be viewed as an

intersubjective generalization of the logical requirement of secondary reflexivity of individual beliefs



(B.T). To explore this interpretation we consider two related types of intersubjective conditions:

qualitative agreement and the absence of unbounded gains from betting.

In Section 3 we study Aumann’s (1976) notion of “agreeing to disagree” from the qualitative
point of view of this paper, which is concerned with the intersubjective structure of individuals’
certain (probability one) beliefs. We show (Proposition 3) that the absence of agreeing to disagree

about “union consistent” qualitative belief indices is equivalent to, not B, T, but the common
possibility of it, that is, —B,—B, 7% we call this property quasi-coherence of beliefs. Thus the notion

of Agreement provides a partial clarification of the intersubjective implications of common belief in

no €rror.

In Section 4 we take a (Bayesian) behavioral point of view and consider the betting
implications of the property of common belief in no error. The suspicion is that if some individual
attributes false probability-one beliefs to another individual then extreme forms of betting might
arise. In the case of complete information (defined by the condition that the beliefs of each individual
are common belief) one can make this intuition precise by considering betting in the context of
“moderately risk-averse” preferences. Indeed, in this context, common belief in no error fails at a
state if and only if unbounded gains from betting are possible. This fact generalizes only in a limited
way to situations of incomplete information. In Proposition 4 we show that at state & unbounded

gains from betting are impossible if and only if a € —B,—B, T Thus the relevant property in general

is, again, quasi-coherence of beliefs rather than common belief in no error.

In Section 5 the Truth Condition is decomposed into three heterogeneous properties: Truth of
common belief (what is commonly believed is true), common belief in Truth about common belief
(if an individual believes that E is common belief, then E is indeed commonly believed) and quasi-
coherence of beliefs. Only the latter has any agreement-type implications. Since from an economic
point of view the absence of unbounded gains from betting seems a very compelling assumption, and
by themselves the other two assumptions are significantly weaker than the Truth Condition, this

proposition lends support to the latter.

In the concluding section we point out that this justification for common belief in no error
hinges on a Bayesian definition of certain beliefs. Within more general models of decision making

under uncertainty, absence of unbounded gains from trade no longer implies quasi-coherence since



an individual’s failure to be certain of some event E no longer necessarily entails a willingness to bet
against E even at extremely favorable odds. We illustrate this in an example in which agents’

preferences can be represented by both the multiple-prior and the Choquet expected utility models.

All proofs are given in the appendix.

2. Interactive belief frames

DEFINITION 1. A KD45 frame for interactive beliefs (or frame, for short) is a tuple

f = < Na ‘Qa 7 {Ii}ieN>

where
e N=/{I,..,n} is a finite set of individuals.
® ( is a finite set of states (or possible worlds). The subsets of (2 are called events.

® 7 Q isthe “true” or “actual” state’.

Io} o}

e for every individual ieN, L: 22— 2 \(J (where 2 denotes the set of subsets of £2) is i’s
possibility correspondence satisfying the following properties (whose interpretation is given in
Remark 3): V a, e,

Transitivity: if fel(a) then L(H) c (),

Euclideanness: if fel(a) then L(a) c L(P).

For every ae (2, 1(«) represents the set of states that individual i considers possible at o

REMARK 1. The assumption of finiteness of £2, common in the economics and computer
science literature®, is made for technical convenience. Of the results given below, Propositions 3 and

5 apply in fact to the general case where 2 may be infinite.

REMARK 2 (Graphical representation). A non-empty-valued and transitive possibility

correspondence [ : (22— ZQ\Q can be uniquely represented (see Figures 1-4) as an asymmetric
directed graph® whose vertex set consists of disjoint events (called cells and represented as rounded

rectangles) and states, and each arrow goes from, or points to, either a cell or a state that does not



belong to a cell. In such a directed graph, @’ € I(w) if and only if either @ and @” belong to the same
cell or there is an arrow from @, or the cell containing w, to @’, or the cell containing @”.
Conversely, given a transitive directed graph in the above class such that each state either belongs to
a cell or has an arrow out of it, there exists a unique non-empty-valued, transitive possibility
correspondence which is represented by the directed graph.

The possibility correspondence is euclidean if and only if all arrows connect states to cells and no
state is connected by an arrow to more than one cell (for an example of a non-Euclidean possibility

correspondence see the common possibility correspondence I, of Figure 1 below).

Finally, if — in addition — the possibility correspondence is reflexive (@ € (), V we (), then one
obtains a partition model where each state is contained in a cell and there are no arrows between

cells.
Given a frame and an individual i, i’s belief operator B, : 2? - 2? is defined as follows: VE

cQ,BE= {weQ: L(o) = E}. B.E can be interpreted as the event that (i.e. the set of states at which)

individual 1 believes that event E has occurred.

REMARK 3. A belief operator B : 20 - 20 is normal if satisfies the following properties:
VEF c 0

Necessity: BQ = 0
Conjunction: B(E nF)=BE N BF
Monotonicity: if EcF then BE c BF.

It is well-known that the belief operator derived from a possibility correspondence is normal. Instead

of taking possibility correspondences as primitives, one could start with a normal belief operator B,
for every individual 1 and derive from it i’s possibility correspondence

Q
L: 02— 2 asfollows: (@) = {w e £2: a € -B—{w)}. These two maps are one the inverse of the

other. Because of this equivalence, properties of the belief operators can be characterized in terms of
properties of the possibility correspondences. For example, it is well known (see Chellas, 1984, p.

164) that non-empty-valuedness of L. is equivalent to consistency of beliefs: VE < €2, BE ¢ —B.—E

(an individual cannot simultaneously believe E and not E; for every event F, —F denotes the



complement of F); transitivity of [ is equivalent to positive introspection of beliefs: VE c €2, BE
c BBE (if the individual believes E then she believes that she believes E); finally, euclideanness of
L is equivalent to negative introspection of beliefs: VE c €2, —B.E < B.—B.E (if the individual does

not believe E, then she believes that she does not believe E).

Notice that we have allowed for false beliefs by not assuming reflexivity of the possibility
correspondences, which —as is well known (Chellas, 1984, p. 164) — is equivalent to the Truth
Axiom: VE < €, BECE (if the individual believes E then E is indeed true).

The common belief operator B, is defined as follows. First, for every ECQ, let BE =

N B.E, that is, B E is the event that everybody believes E. The event that E is commonly believed
ieN

1s defined as the infinite intersection:

BLE=EBE "nBBE nBBBE n ..
€ e ¢ € ¢ ¢

Q
The corresponding common possibility correspondence 1,: 2— 2 \J is given by: for every ae 2,

L(o)={we 2: ae—-B,~{w} Itis well known® that I, can be characterized as the fransitive

closure of | 1., thatis,
1
ieN

Va,fe 2 fel(a) ifandonlyif there is a sequence i, .. im> in N and a sequence
(770, /I 77m> in 2such that: (i) 7, = o, (i) 7, = fand (iii) for every k=0, ..., m -1,

M1 € Iikﬂ(”k)'

Note that, although I, is always non-empty-valued and transitive, in general it need not be euclidean

(despite the fact that the individual possibility correspondences are: for an example see Figure 1;

recall that —cf. Remark 3 — I_ is euclidean if and only if B, satisfies Negative Introspection: VE

Given a frame F, a model based on Fis a tuple { F, ¥, @), where



e Yisasetof external circumstances or facts of nature, and

' ' . . .
e ¢:(—>2 (where2 isthe setof subsets of #) is a function that specifies, for every state, the

facts of nature that are true at that state.

A state in a model determines, for each individual, her beliefs about the external world (her first-
order beliefs), her beliefs about the other individuals’ beliefs about the external world (her second-
order beliefs), her beliefs about their beliefs about her beliefs (her third-order beliefs), and so on, ad
infinitum. An entire hierarchy of beliefs about beliefs about beliefs ... about the relevant facts is thus
encoded in each state of an interactive belief model. For example, consider the following model,

which is illustrated in Figure 1 according to the convention established in Remark 2: N = {1, 2}, Q
={z . 7}, ¥= {sumy, cloudy}, (2) = /)= {sunny}, f) = {cloudy}, [(9) = {7}, L,(H) =1,(») =
{6y L(n=L(»= {7, 7}, (P = {B}. Here the true state zdescribes a world where in fact it is

sunny and both individuals correctly believe that it is sunny; however, while individual 1 believes
that individual 2 believes that it is sunny, individual 2 is uncertain as to whether 1 believes that it is

sunny or he believes that (it is common belief that) it is cloudy, etc.

|Insert Figure 1 |




cloudy sunny  sunny

x
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Figure 1
N={L2}, 2={z 4 1(D={5, LB=1()= (B LO=1M={n7. LB =B, ()=
L) =18 r 7, LB = {F, ¥= {sumy, cloudy], #z)=¢@y)= {sunny}, &/)= {cloudy;.

Let Tj (for Truth of j’s beliefs) be the following event:
T, = ()—(BE N—E)
Ee2®
Thus, forevery € 2, a € Tj if and only if individual j does not have any false beliefs at « (for
every ECcQ if o EBJ.E then € E)’. Let T (for Truth) be the event that no individual has any false
beliefs:

T=T,.

JjEN

For example, in the frame of Figure 1, T = {f, 7} and, therefore, B,T = {£}.

DEFINITION 2. Forevery aef2, the Truth Condition holds at « if and only if



aeTAB,T.

The above definition is justified by the following observation. Given a frame (N, 2, £

{Ii }._x 7> define the z-reduced frame as the frame (N, 27, #{I! }._ ) where 2'=1,(7) U {7} and

1€

I} is the restriction of . to £2” Let B{ be the corresponding belief operator of individual i and 1. the

corresponding common possibility correspondence. Then I; is the restriction of I, to (2 [in
particular, I: (7) =L(7)] and for every E' € 2" Bi/E'=BE' n 2. If (N, 2, z, {I,}i N ) is a frame
jlie

where 7 € T B, T, then in the t-reduced frame the following is true: VieN, VE' c 2 B/E'c E’
(note, however, that in the original frame in general it is not true that VieN, VEc.(, B.Ec E: see

Figure 2a). Thus the 7-reduced frame is a partitional frame (unlike the original frame, in general).

Figure 2b shows the 7-reduced frame corresponding to the frame of Figure 2a.

| Insert Figure 2|




O

Aq

(2)

Figure 2

A frame (a) and its z-reduced form (b).
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The intersubjective implications of the Truth Axiom (VieN, VEc (2 BE c E) are strong:

“The assumption that Alice believes (with probability one) that Bert believes (with
probability one) that the cat ate the canary tells us nothing about what Alice believes
about the cat and the canary themselves. But if we assume instead that Alice knows
that Bert knows that the cat ate the canary, it follows, not only that the cat in fact ate
the canary, but that Alice knows it, and therefore believes it as well” (Stalnaker,
1996, p. 153).

This observation can be stated as a local property of beliefs.

DEFINITION 3. Given two individuals, i and j, and a state «, i is like-minded
with j at o if and only if 1 shares all the beliefs that she attributes to j, that is, for every event

E,ifae BiBjE then o € BE. Let Lij be the event that i is like minded with j:

L,= ] ~(BBEN-BE).

1 Fa®

Let L be the event that every individual is like-minded with every other individual:

L= ﬂ L.

The following equivalence exhibits a converse to Stalnaker’s observation. It is a

straightforward consequence of secondary reflexivity.

OBSERVATION 1. Lij = BiTj and, therefore, B,LL = B,T.

DEFINITION 4. Define quasi-coherence of beliefs as the common possibility of
public like-mindedness and denote it by Q:

In the following section we provide a characterization of quasi-coherence in terms of

“agreeing to disagree” about qualitative belief indices. In Section 4 we show that quasi-



coherence is also equivalent to the impossibility of unbounded gains from betting in

environments where the individuals are “moderately risk averse”.

3. Agreeing to disagree and quasi-coherence

The notion of “agreeing to disagree” was introduced by Aumann (1976) in a Bayesian
context. Aumann assumed the S5 logic for individual beliefs (information partitions) and
showed that if the beliefs of the individuals are obtained from a common prior probability
distribution over £2by updating on private information, then the individuals cannot agree to
disagree in the following sense: if it is common knowledge that individual 1’s posterior of
some event E is p and 2’s posterior of E is g, then p = q®. In this section we extend the
notion of Agreement by considering a class of qualitative belief indices within a Bayesian
context and show that the absence of agreeing to disagree with respect to those indices is

equivalent to quasi-coherence.

For purposes of notational simplification, throughout this section we restrict attention

to the case where N = {1,2}.
DEFINITION 5. A Bayesian frame based on the frame F is a tuple

B = (F. (b} ) where

e for every individual ieN, p. : 22— A(£2) (A(L2) denotes the set of probability

distributions over (2) is a function that specifies 1’s probabilistic beliefs, satisfying the

following properties ’ [we use the notation p, rather than p,(@)]: V a,Be (2,
(1) supp(p, ) =I(a), and
(i) ifL(e)=L(P thenp, = P, 4

Thus p, €A(£2) is individual i’s subjective probability distribution at state « and the above

two conditions say that every individual knows her own beliefs. Let ||pi =D, aII denote the



event {we Q: p,, =D, } and IT. = L(a)ll the event loeQ: I(w)= Ii(a)} . It is clear that

lIp, = pi’all = ||, =I(e)ll and that the set {||pi = Pi,wll : w € 2V} is a partition of (2, it is often

referred to as individual i’s #ype partition.

Given a Bayesian frame, a belief index is a function f: A(X2)— X (where Xis a set
with at least two elements). A proper belief index is one that satisfies the following property:
Vp.qeA(R), VxeX, Vae[0,1],if f(p)=£(q)=x then f(ap + (1—-a)q) =x.'° Properness is
necessary in order to ensure that commonly believed inequality of indices can be interpreted

as disagreement (see Bonanno and Nehring, 1996). Let ffTw denote the class of proper belief
indices .

Given a proper belief index f: A(£2) — X and an individual ieN, define f; : 2— X by

f(&) = fip, ) For every xe X denote the event {aeQ: fla)=x} by |If;=xll.

DEFINITION 6. Given a Bayesian frame and a proper belief index f: A(£2) — X,

at o € (2 there is Agreement for f or f-Agreement if and only if, forallx, x,eX,
if aeB,(If,=x, N lf,=x,ll) then x, =x,, (1)

that is, if at « it is common belief that individual 1°s belief index is X, and individual 2’s
index is x, then the two indices must be equal. Let f-Agree be the event that there is

f-Agreement:

fAgree = () B, (If, =x,Il ~llf,=x,). 2)

X)X, eX

xl:ﬁxz

Given a set J of proper belief indices, at a2 there is Agreement on ¢ or
o -Agreement if and only if, Ve , a € f-Agree. Let /-Agree be the event that there is

o -Agreement:



J-Agree = ﬂf f-Agree. 3)
ey

Of particular interest are the following special cases of proper belief indices: simple

indices, which take on only two values, 0 and 1, and qualitative indices, which depend only

on the support of p € 4(2). We denote the first class by ffz and the latter by Q[Q. Thus

I, ={f: 46— X : () feJ,_, (i) X={0, 1} and (iii) £ (1) isclosed " } 4)

Jo=1/ed, :Vp,qeA@), if supp(p) =supp(q) then f(p)=/(q) }. (5)

The following proposition, which is proved in Bonanno and Nehring (1996), follows

from a straightforward separation argument.

PROPOSITION 1. fe J ifand only if there exists a random variable Y : 2— R

1 if D Y(w)p(w)=0
such that, for all peAQ2), f(p)= weR .

0  otherwise

REMARK 4. A qualitative belief index can be written as f=d | o supp, with

d = ZQ\ & — X (such functions d L have been studied in Rubinstein and Wolinsky, 1990). A
qualitative belief index is proper if and only if d ” is union consistent, that is,

m

Vm2/, VE, . E €2 VyeX, if d(E)=xforallk=1,..m thend (U E, )=x

k=1
(6)
Note that since the events E , ..., E_ are not assumed to be pairwise disjoint, union
consistency is a stronger property than the Sure Thing Principle defined by Bacharach (1985).

1 ifsupp(p) c E

Fix an event E # J and consider the following index: f.(p) = { 0 otherwi
otherwise



Thus, for every individual 1 and state «, fE(pi,a) =1lifand only if « € BE 2 Let Q‘rs =
{ Sy 1 A4¢2)—> {0,1} :Ec 0}, Clearly, 33 c 32 M &’TQ. The following proposition shows that

in fact gs coincides with Q’TQ N 32.

PROPOSITION 2. J = J nJ,

Note that o € gs-Agree if and only if, for no event E, & € B,(B E N —B,E), that is,

there is no event about which the two individuals “agree to disagree”:

Js-Agree = (] [ [] —B.BEN-BE).

ieN jeN E®

LEMMA 1. Vae 0, aeé’rs-Agree if and only if

Vij e N, 3fel(a) suwchthat (A< | 1(@)."

wel.(a)

As a corollary to Lemma 1 we get that quasi-coherence of beliefs rules out agreeing to

disagree about events.

COROLLARY 1. Q </ -Agree.

The converse to Corollary 1 does not hold. To see this, consider the frame illustrated
in Figure 3. At the true state 7 both individuals correctly believe p; however, while individual

2 believes that individual 1 believes p, individual 1 considers it possible that 2 is in doubt as

to whether or not p is true. By Lemma 1, f}rs-Agree = (2, on the other hand, Q = (in fact,

T = {7, 6} and, therefore, B,T = &; thus —B,—B, T = &).

| Insert Figure 3 |
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Figure 3

A frame that shows that the converse of Corollary 1 does not hold

To obtain a full characterization of quasi-coherence one needs to consider the entire

class of qualitative belief indices.
PROPOSITION 3. Q = 5[Q-Agree.

It follows from Proposition 3 and the above example that 3S-Agree # JIQ-Agree. Thus, in

contrast to the case of general “quantitative” proper belief indices, for which simplicity can



be assumed without loss of generality (i.e. yw-Agree = c?z-Agree: see Bonanno and Nehring,

1996), simplicity is a restrictive assumption for qualitative belief indices.

4. Unbounded gains from betting and quasi-coherence

As in Section 3, we restrict attention to the case where N = {1,2}.

Let ‘U be the set of differentiable functions u: R — R that satisty the following
properties:
(1) u is increasing, concave, u(0) =0, u’(0) =1, and

(2) lim u(x) =+ and lim u'(x)=0.
‘U will be referred to as the set of moderately risk-averse utility functions.

DEFINITION 7. A moderately risk-averse betting environment based on the

frame ‘Fis atuple £ = (B, {ui}ieN ) where B is a Bayesian frame based on F and, for

everyie N, u.: 22— U is a function that associates with every state a utility function in the
class ‘U satisfying the property that, V o, € 0, if Pis= Py then W, = that is, each

individual knows her own utility function.

DEFINITION 8. Within a risk-averse betting environment, a proposed bet is a

INJ1€

vector x € R such that, for every o € 2, z Xip = 0; X, 18 the payment (to, if positive,

ieN

or from, if negative) individual 1 at state .

Given an individual i, a state & and a proposed bet x, let

Vi(a’ X) - z ui,a (xi,a)) pi,a (a))

weQ

Thus v(a, x) is individual i’s expected utility at state & (given her utility function and beliefs

at that state) if she accepts the proposed bet x. Given a number & € R, let [[v,(x) > &|| denote



the event that individual 1’s expected utility (if she accepts the proposed trade x) is at least &
vz dl = {ae @:ivi@x =&}

DEFINITION 9. A risk-averse betting environment admits unbounded gains

from betting at o if and only if

INJI€]

Ve IR+, IxelR such that o € B,( ﬂ Iv.(x) = &lD.

ieN
that is, if, for every positive number &, there is a proposed bet x such that at « it is common

belief that everybody has an expected utility of at least & if she accepts the bet x.

Quasi-coherence is equivalent to the absence of unbounded gains from betting,

PROPOSITION 4. Let F be a frame where N = {1, 2} and « a state. Then ‘F

admits unbounded gains from betting at ¢ if and only if o € —Q.

REMARK 5. The proof of Proposition 4 makes essential use of the notion of
moderate risk-aversion. For the necessity part the crucial property is unboundedness of the
utility function, while the sufficiency part relies on the property that marginal utility tends to

zero as X tends to infinity. Without the assumption that lim u'(x) =0 it is possible to have
unbounded gains from betting at  even if & € B,T .

REMARK 6. In the case of complete information (where each individual has only

one “type”, that is, the beliefs of every individual are commonly known) Q = B, T. Hence

common belief in no error is equivalent to the impossibility of unbounded gains from betting

and, by Proposition 3, to qualitative agreement.

5. Decomposing the Truth Axiom

In this section we allow for any number of individuals. To explore the gap between

quasi-coherence and common belief in no error we introduce the following events (T,



stands for Truth about common belief, while T* stands for Truth of common belief):

T, = (1 [] —(BB,EN-B.E)
ieN Ee%

T = () ~(B.EN—E).

Eef
T, captures the notion that individuals are correct in their beliefs about what is commonly
believed: a € T if and only if, for every event E and individual i, if, at «, individual 1
believes that E is commonly believed, then, at &, E is indeed commonly believed (if

aeB.B,E then aeB,E). On the other hand, €T if and only if at & whatever is commonly

believed is true (for every event E, if eB,E then a€E). Clearly, Truth of common belief is
qualitatively weaker than Truth; given that B,T =2 T can be viewed as Truth shorn of

any intersubjective implications. It is straightforward that acT ifand only if, ael (). To

check whether T, holds at a state, the following lemma (proved in Bonanno and Nehring,

1997) is useful.

LEMMA 2. ae T, ifandonlyif VieN, V pel(a), 306 € I(a) such that

B e 1(0).

Lemma 2 says that at & Truth about common belief holds if and only if whenever it is
possible to go from « to S with the common possibility correspondence then it must be
possible to go from « to fin two steps using the possibility correspondence of an arbitrary
individual for the first step and the common possibility correspondence for the second step.

Thus, for example, in Figure 1 y ¢ T, = {7, B},since y € L,(») and I (») = {#} and yis not
commonly reachable from £: I,(f) = {f}. In fact, at yindividual 1 erroneously believes that it

is common belief that it is cloudy: y € B B,E m —=B,E where E = {}.

The following proposition gives a decomposition of the Truth Axiom in terms of



quasi-coherence, Truth of common belief and (common belief in) Truth about common

belief.

PROPOSITION 5. TnBT = T nBT, Q.

REMARK 7. Since B,T =2 it follows that B,T = B(T,, N Q)

REMARK 8. TheeventsT, B, T, and Q are pairwise independent, that is, in

general, none of them is a subset of the other. This can be seen as follows:

For the pair (T*, B,Tp): in Figure 1, T* =02 ¢ BT = {£"; in the following frame: N =
{1,2}, 2= {7, B}, l(w) = {B} forallie Nand w € 2, B,T.,=Q2 & T* ={f}.

For the pair (Q, T*): in the frame just described, Q =02 & T* = {f3}; in Figure 3, T* =&
Q=4.

For the pair (Q, B,T_,): in Figure 3, B,T_,= 2 & Q =, in the following frame:
N= {12}, 2={z, f}, L(d=1L(P =15}, L(D = {7, LB = {f},
Q=QEBT = {B.

REMARK 9. None of T*, T, and B,T ., either individually or in conjunction

CB’
with the others, has any “agreement” implications. This can be seen from Figure 4 where T
=T, =B.T_; = £2and yet at both 7and /S the individuals agree to strongly disagree:

B,(B,—E N B,E) = Qwhere E = {7}. On the other hand, by Propositions 1 and 4, Q is

precisely the property that captures the notion of agreement.

| Insert Figure 4|
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I,: (o & .
T

I,: o 3

Figure 4

T,T., and BT B do not imply “agreement”

6. Conclusion

The Truth Condition (or the somewhat weaker hypothesis of common belief in no
error) plays an important role in the foundations of backward induction (Ben Porath, 1997,
Stalnaker, 1994, 1996, Stuart, 1997). In Sections 3 and 4 it was shown that the content of

B, T can only in part be reduced to the intersubjective notions of agreement and bounded

gains from betting. From an economic point of view the absence of unbounded gains from
betting seems a very compelling assumption. While economic agents engage in (explicit or
implicit) bets with each other (e.g. in the stock market), the associated gains from trade seem
far less than infinite.'® However, it can be shown (Bonanno and Nehring, 1997, Stuart, 1997)

that the property that characterizes the absence of unbounded gains from betting (quasi

11



coherence) is by itself too weak to yield the desired implications in game theoretic reasoning.
By Proposition 5, in order to restore the game-theoretic implications of the Truth Condition
one needs to augment quasi coherence with the properties of Truth of common belief and
Truth about common belief. Thus, given the plausibility of the assumption of quasi-

coherence, the burden of justifying the Truth Condition lies in the latter assumptions.
However, as noted in Remark 9 and illustrated in Figures 3 and 4, both T and B, T, are by

themselves significantly weaker than the Truth Condition. Thus Proposition 5 can be viewed

as providing support for the latter’s plausibility.

The above defense of the Truth Condition based on the absence of unbounded gains
from trade is sensitive to a Bayesian definition of certain beliefs. Within more general models
of decision making under uncertainty, absence of unbounded gains from trade no longer
implies quasi-coherence '’ since an individual’s failure to be certain of some event E no

longer necessarily entails a willingness to bet against E even at extremely favorable odds.

This is illustrated by the following example, in which individuals are assumed to
maximize the minimum expected utility of an act relative to a set of “admissible priors” (for
an axiomatic foundation of this MMEU model, see Gilboa-Schmeidler, 1989; the example is
also consistent with the Choquet-Expected Utility Model, or with Bewley’s, 1986, inertia

model).

DEFINITION 10. A multi-prior frame is a tuple M = { N, £2, T’{Hi}ieN>

where, as before, N is the set of individuals, £21is a finite set of states, zis the true state and

T . 4(2) . . . .
e for every individual ieN, /71: Q2— 2 is a function that associates with every state a

set of probability distributions on (2 satisfying the following property, which says that

individual i knows her own beliefs:
Vape Qif p(f)>0 forsome p € /1 then IYiQZIYiﬂ (7)

(A Bayesian frame as defined in Section 3 is thus a special case of this where, for every i and

a, Hi,a 1s a singleton.)

12



It has been observed before in the literature that in a non-additive context, there is
more than one (at least minimally) plausible way to define certainty in terms of preferences;
see, e.g. Morris (1995) and Sarin and Wakker (1995). Both of these papers advocate a
definition of the certainty of an event E as equivalent to its complement being a Savage-null
event. A distinctive advantage of this definition is that it ensures that the conjunction of
certain events is itself a certain event. Its privileged status is further confirmed by the analysis
of Nehring (1997) which proposes a definition of unambiguous probabilistic beliefs based on
preferences. Specialized to unambiguous probability-one beliefs, this definition coincides

with the suggested one.

In the MMEU model, the suggested definition of “individual 1 is certain that E” is
equivalent to requiring that all of 1’s admissible priors assign probability one to E. This leads

to the following definition of the corresponding belief-operator.

DEFINITION 11. Given a multi-prior frame, the belief operator of individual i,

0 Q.
B.:2 — 2, is defined by:
a € BE ifandonlyif, Vp € 77 , p(E)=1.

REMARK 10. Itis easily verified that the belief operator thus defined is normal

and satisfies consistency as well as positive and negative introspection (cf. Remark 3). It is

Q
also straightforward that the associated possibility correspondence 1. : £2— 2 is given by

L(a)=|J supp(p).

PEHi_u

EXAMPLE 1. Consider the following multi-prior frame: N = {1,2}, Q= {1, £, 7},
M, =17, = 1T, = {p} with p(d) = p(&) = +, 1T, = {q} withq(9) = 1, [T, ;= 11, =
{p e A):p(7)=0and p(p) < 10_6 }. Note that the corresponding qualitative frame
(obtained by replacing the function 77 with the possibility correspondence defined in Remark

10) is the one illustrated in Figure 3. In particular, the agents’ beliefs fail to be quasi-coherent

at 7.

13



The notion of unbounded gains from trade generalizes naturally to multi-prior frames

by redefining v.(&, x) (see Section 4, after Definition 8) as follows:

Vi((Z, X) = ggl—}lll mezgui,a(xi,(o)p(w)
It is easily verified that, despite the failure of quasi-coherence, the frame of Example 1 does
not admit unbounded (or indeed any) gains from betting. The reason for this is as follows.
For x to be a bet with the property that at 7 there is common belief that both individuals

derive positive expected utility from accepting x , it is necessary that x 2s (the payment to

individual 2 at 7) be positive; hence, since X, <0, X, ;must be positive, i.e. X, ;must be

negative. However, x, (<0 implies that the minimum expected utility of individual 2 at &
(and p) 1s negative, since one p € ]72 sassigns probability 1 to 6. The essential feature of this

example is the failure of the admissible priors of individual 2 at fand yto have the same

support.

Clearly, the Bayesian analysis of Section 4 generalizes to multi-prior frames in which
agents’ beliefs are commonly known to have this property. While not implausible, there
seems to be nothing particularly “necessary” about it; indeed, it seems quite sensible for an
individual to recognize the non-trivial possibility of an event (i.e. assign upper probability
greater than zero to it), while abstaining from putting any strictly positive confidence in its

occurrence (i.e. while assigning /ower probability zero to it).

The above discussion confirms the implicit premise of this paper that the assumption
of common belief in no error (B, 7) is not as simple as it may seem, in that its interpretation
and justification depend on the meaning attached to the notion of “belief” or “certainty”.
Understanding common belief in no error in the context of more general interpretations of

certain beliefs is an issue that deserves further exploration.
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Appendix

REMARK A.1. A possibility correspondence [ : 22— 2? is secondary reflexive if V o, e (2,
Pel(a) implies Sel(f). Secondary reflexivity is implied by euclideanness. Hence, for every ieN, L

is secondary reflexive. It follows from the definition of I, that I, is also secondary reflexive.

Proof of Observation 1. (BiTj - Lij) Letx e BiTj. Fix an arbitrary event E. Then
ae Bi(—|BjE U E). We want to show that o € —.BiBjE U B.E. Suppose that « € BiBiE. Then

B(BE N (-BE UE))=B,(BENE)c

(by Conjunction) (by Monotonicity)

aeBBENB(-BEUE)=

B.E.
(Lij c BiTj) Let a € Lij. Then o € —|BiBiTj v BiTj. Since BiTj = (it follows from secondary

reflexivity of Ij), BiBiTj = 2 (by Necessity). Hence o € BiBiTj. Thus o € BiTj.

Since BT, = L., by Conjunction L =(")B,T. Hence B,L=B,T. W
17 ij

ieN
Proof of Proposition 2. We only need to show that 3Q N 32 - 35. Fix an arbitrary

fe gQ N gz and let the random variable Y : £2— R represent f'according to Proposition 1.
If Y(w) 2 0 for all we(2 thenf=f e 35. Otherwise, there exists w € £2 such that Y(w) <O0.
Then, since f € ¢, it must be Y () < 0 for all. This implies that /' = Ji € 35 where E =

{we2:Y(w)=0}. A

Proof of Lemma 1. Call P the property stated in Lemma 1. Assume P. Choose arbitrary
Ec 0 1,j € {1,2}. By Conjunction, —=B,(B.E N —|BjE )=-B,BE U —|B*—|BjE. Fix an arbitrary
« € B,B.E. We want to show that & € —.B*—.BiE, that is, (@) N BJ.E # (J. By P there exists a

0 € I,(@) such that Ii(é) < U I.(®) . Since a € B,BE, I.(a) c BE. Thus V wel (), I(®) C E.

wel, ()
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Hence |J I.(®)c E. Hence I(8) c E, thatis, 6 € BE.

wel, ()

Assume that P is violated. Then there exist i,jeN and ae2such that, for all o€l (),

1(9) ¢ U L(w).LetE= |J I(@). Then, for all wel,(a), [(@) CE, that is, BE. Thus

wel, (a) wel, (a)

L(a) = BE, i.e. « € B,B.E. On the other hand, [,(a) N BJ.E =, because if o € I.(a) N BJ.E then

Ij(é) c E, contradicting our hypothesis. Hence « ¢ —|B*—|BjE. Thus a € B,(BE N —|BjE ). B

LEMMA A.1. Vae® ae BTifandonlyif, Vie N, {Ii(a)) :wel(a)} is apartition of

L.(a) [note, however, that it is possible that o ¢ [.(@)].

Proof. By euclideanness and transitivity of L, for every f3, y € €2, either L(f) = L(y) or

L(D N L(») = D. Thus the stated condition is equivalent to

vieN, |J/5(o)=IL(a) (A.1)

wel.(a)
Fix an arbitrary i € N. First note that

Vae 2, |JI(o)cl(a) (A.2)

weli(a)

In fact, by definition of I,, for every w € €2, I(w) < I,(w). Hence U I (w) U I.(w) . By

wel.(a) wel.(a)

transitivity of [, if @ € I, (@) then [,(®w) < I,(«). Hence U I.(w) c I.() . Thus we only need to

wel(a)
show that o € B,T if and only if,
VieN, U I(w)21.(a) (A.3).
wel(a)
Let o € B, T. Then
Vel (@), e [)L(B). (A4)

ieN
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Fix an arbitrary f € 1,(«). By (A.4), forallie N, e L(B) < U I, (w) . Conversely, assume

wel.(a)

(A.3). Fix an arbitrary f € 1,(@) and an arbitrary 1 € N. Then, by (A.3), S € U I, (w). Hence

wel(a)
there exists a y € 1,() such that § € 1(»). By secondary reflexivity of . (cf. Remark A.1),

B € L(P). Thus (A.4) is satisfied and hence o € B,T. &

Proof of Corollary 1. Fix an arbitrary « € Q. Then there exists a # € 1,(«) such that

p € B,T. By secondary reflexivity of I, (cf. Remark A.1), # € I,(f). By Lemma A.1,

U l(w) = U I,(w). Thus for every 1,jeN, L(f) < U Il ()= U I (o) . Hence, by
wel(fB) wel.(B) weli(f) wel(B)

Lemmal, a € ffs-Agree. u

LEMMA A.2. LetS c £ be such that, forall j € N, UIi(s)gS. If, for all i,je N,

seS -

ULes)=U I (s) then, forallj e N, U 1,(s)= U L.(s).

seS seS

Proof. Fix an arbitrary jeN and an arbitrary s€S. By definition of I, Ij(s) c L.(s). Hence

U 1, (s) = U L (s). Next we show that | 1, (s) 2 U Z. (s). Choose an arbitrary y e J L. (s).
seS seS seS

seS ses

Then there exists a # € S such that y € I,(). By definition of 1, there exist a sequence {J,, ...,

& ) in 2 and a sequence (k, ..., k ) in N such that § =, & =y and foreveryr=1, ..., m,

o€l (6 _,). Since, by hypothesis, for every individual keN, U [ (s)cS and fes, it

seS

follows that the sequence (&, ..., §m> is entirely in S. Moreover y =o€l (6__,).By

secondary reflexivity of I (cf. Remark A.1), y e L ). Since y € S, I (y) <

m

UI, (s). Byhypothesis, |J Ij (s)=UI, (s).Hence ye Ij (s). m

seS m seS se§ m seS
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COROLLARY A.1. Let o, € 2 be such that fe [,(a)and Vi,jeN,

U IL(e)= U I,(®).Then, forallieN, U I (0)=1(p).
wel«(fB) wel«(fB) wel«(fB)

Proof. By definition of L, for every @ € £2and for every i € N, L(®) < I,(®). Thus

UL (w)c UL (w).Hence, by LemmaA.2 [withS= |J I.(®)], forallie N,
wel«(fB) wel«(B) wel«(fB)

U L (w)= U I (@) .By secondary reflexivity of I, (cf. Remark A.1), since S € (@), f €
wel«(f) welv(f)

L(A.Thus |J I.(@)2I.(B).In conjunction with (A.2) thisyields |J L. (w)=1.(5). ®
el (f) oel.(B)

LEMMA A.3. Consider a frame where N = {1,2}. Fix an arbitrary « € £2. Then the following

are equivalent:

(i) Forall T,c{/[(w):wel(a)}and T, c{L,(0): 0w el(a)}, UT, #UT,.

(i) VBel(@, U L@=# U L.
oel,(f) el ()

Proof. (1) = (ii). Choose an arbitrary S € [.(@). By transitivity of I, [,(f) < L.(«). Choose

T, ={l(0):wel.(f)}and T, ={L,(»): @ el.(B)}.Then, by (), U I (w)=UT, #

1
wel«(f)

UT.= UL(w).

wel(B)
not (i) = not (ii). Suppose that (i) is violated, that is, there exist T, < { l(w): o el.(a) } and
T,c{L(w):wel(a)} suchthat JT =UT,. . LetT=UT,6 =T, . By transitivity of L,,
T c I,(®). By transitivity and euclideanness of L, the elements of {I,(w):@el.(x)} are pairwise

disjoint. Hence T and T, are partitions of T. Thus |J I (@)= |J 1,(®)=T. Then, by

weT wel

Lemma A.2, |J I,(®)=T. Fix an arbitrary § € T. Then I(#)  T. By (i), U [,(®) #

wel wel«(f)

U I,(w). Then there isanieN and a y € Q2suchthat ye L(w)- U [I.(w) where
oel.(p) odl,(f) e, (p)
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jeN-{i}.Sinceye (J L(o)c U L(0) (because L(HcT)and | [(0)= U L, (@),
el (B) wel weT weTl

there exists a 0 € T such that y € Ij(é). Then y € Ij( ) by secondary reflexivity of Ij. Since

re U L (@), there exists a 6 € I,(f) such that y € L(6). Then, by definition of L,
wel, ()

ye L(p). Thus y e Ij(y) < U Ij (w), contradicting our hypothesis that
wel ()

wel (B) wel (B) -

COROLLARY A.2. Consider a frame where N = {1,2} and & € —Q. Then

VBel(a, U L@= U L(o).
wel, (p) wel, (B)

Proof. Suppose that for some g€ [(a), |J [,(w)= |J I,(®). Then, by Corollary A.1,
el (f) weli(f)

U L(w)= U L(w)=1(p). Thenby (A.3) fe B, T. Hence « € -B,—-B,T=Q. &
wel(f) weli(f)

Proof of Proposition 3. Since 3Q-Agree - &IS-Agree, by Corollary 1, 3Q-Agree 2 Q. Thus it
only remains to show that f/IQ-Agree c Q or, equivalently, that -Q < —W(JIQ-Agree. Let

a € Q. By Corollary A.2,

VBel(a, U L(@= U L(o). (A.S)
wel (f) wel ()

The crucial step of the construction is to ensure that the belief index to be defined is proper, that is
(cf. Remark 4), satisfies union consistency. The key to this is Lemma A.3 above. Thus, for every

1 €N, let lei be the closure under union of the set { [(@) : @ € I,(@)}. By (A.5) and Lemma A.3,

A NA,=0D. (A.6)
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1 if supp(p) € A,
Define the following function f : AX2)— ZQ v {0,1}: f(p)=10 if supp(p) € A, .
supp(p) otherwise

Then, by (A.6) f is well-defined and, furthermore, f € J..; in particular, f is proper. By
definition of A,V wel(a), f(p, )=1and f(p, )=0.Thusae B,(Il f; =1l |l f, =

0l|). Hence a ¢ f -Agree. B

LEMMA A.4. Fix a (not necessarily moderately) risk-averse betting environment. Choose an

arbitrary individual i and an arbitrary state ¢. Let m be the number of elements in I(¢) and p, =

min {p, (®): w € L(@)}. By definition of Bayesian model, m > 0 and p, > 0. Let & > 0 be such

that
LRGP (A7).
& m
Then, for every proposed bet x,
it v(@x)=Y u,(x,) p.(@2¢ then D tx, >0 (A9).
weQ wel;(a)

Proof. First note that every function u € ‘U satisfies the following properties [because of concavity

of u together with the normalization u’(0) = 1]:

VyeR, u(y)<y, and (A.9)

u(y) _ uy)
yooy

VyyeR, y2>y = (A.10)

By deﬁnition Of Ii(a)ﬂ Z u/,a (xi,m) pi,a (C()) = z u/,a (xl,m) pi,a (0)) . Hence> by (A9)7

0eQ) wel,(a)

vi(a, x) < Z X, Pio(®). Assume that vi(a, x) 2 & > 0. Then X 5 > & for some f € L(). Let

wel (a)
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max

y =max {xi o' WE Ii(a)}. Thus ymax > & Hence, by (A.10) and the hypothesis that

U4(S) _ po
E  m

4aT) Py (A.11)

y m
It follows from (A.11) (recall that ymalx > & >0) that

u max max
JMa0T) ™ (A.12)

Dy m

Lety . = min {Xi L OE Ii(a)}. Now, 0<¢& < z U, (x,,) p,(@) < pu (y.)+u a(ymax).

wel;(a)
Hence
u. max
u () > - ) (A.13).
' Py
By (A.9),
ymin 2 ui,a (ymin) (A14)
It follows from (A.12)-(A.14) that
ymin Z - (A 15)
m

1 m—1 1 max m—1 Y " 1 max 1 max
Hence z —X,, 2 Voin TV > - +—y"" =" >0. 0
m m m m

i,m
wel;(a) m

Proof of Proposition 4. Proposition 4 follows from the following:

(1) If there exists a moderately risk-averse betting environment based on ‘F that admits

unbounded gains from betting at ¢, then o € —Q, and

(11) if e —Q, then every moderately risk-averse every betting environment based on

F admits unbounded gains from betting at c.
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Proof of (i). Fix a moderately risk-averse betting environment that admits unbounded gains from

betting at state ¢, that is,

INJ1€

VéeR,IxeR " suchthataeB,([] lv(x)= ). (A.16)

ieN
Choose a & large enough that (A.7) is satisfied for all ieN and all S</ () (this is possible because

both N and (2 are finite and, by definition of moderately risk-averse utility function u,

lim u'(x) = 0). Then, by (A.16) and Lemma A.4 there exists a proposed bet x such that, V 1eN

1
and V Bel(a), m x,,, >0 (where [L(f)| denotes the cardinality of L(/)). Hence
‘ oel(p)
VieNandV fel(@), D x, >0 (A.17)
wel, (B)

Suppose that & € —B,—B,T. Then there exists an y € /() such that y € B,T. By Lemma A.1, for

everyie N, {I(w): @ e ()} isa partition of L(»). By transitivity of I, () < L(). Thus, by

(A.17),
VieN, > x, >0 (A.18)
wel(y)
It follows from (A.18) that Z Z x,, >0.But Z Z X, = Z Z x,, =0by
ieN wel:(y) ieN wel.(y) wel.(y) ieN

definition of proposed bet, yielding a contradiction.

Proof of (ii) Suppose that o € —Q. Fix an arbitrary risk-averse betting environment based on this

frame. Let J,= U I(®) - U L(w) andI,= U ,(0) - U I (®). By Lemma A3

weli(a) wel(a) wel«(a) wel«(a)
(choosing T, = { I,() : w el.(a) }), (I, -1) U (I, —I)#D. Fix an arbitrary ﬁ e, -I)u

(Z, —I)). Suppose, without loss of generality, that # € I, —I,. For every i € N define §ﬂi 2> N

U {oo} as follows (see Figure 5): §ﬂi (w) = o if ,3 ¢ U LL(w) (thatis, if,gcannot be reached

o'el ()

from o with a sequence of “steps” in which the first step is taken by individual 1) and otherwise
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5121 (w) =1 where [ is the smallest positive integer such that there exists a sequence <a)k>k=0, Loy

satisfying the following conditions: (1) @, = @, (2) o, = ,g ,and (ii1) forallk =0, ..., £, ifk+11is

odd then @, ,, € (@) and if k+1 is even then o, ,, € Ij(a)k) with j # 1. Note that, by construction,

Y o,0’e, VieN,
if I(®)=1(«') then ééi (w) = ééi (0), éél (w)1s odd (if finite) and 5132 (w) 1s even (if finite) (A.19)

Finally, define &, : 2 N U {00} as follows: &, () = 0, and, for every € 2\ {5} . &, (o) =

min { &, "), 5132 (w)}. Note that, by construction,
VieN, V o,w’e Q2 with 5[% (0) <0, I(w) =1(0)and 0 €el(@), | 5{5 (0 — 5{5 (w)] £ 1. (A.20)

Furthermore,

V yn € €2 if nel(y) and 513 (77) is odd then 3 f€/ () such that 513 (0) 25[3 () —1 (A.21)

In fact, if 56 () =1[i.e. Be 1 ()] then 6= f3, since, by transitivity and euclideanness of I, I (7)
=1,(»). Suppose 5@ (n7) = £ >1. Then there exists a sequence <wk>k=0,...,g such that o, = 7, ®,= p

and forallk =0, ..., £, ifk+1 is odd then @, € I,(®,) and if k+1 is even then o, , € L(®)).
1 1 2 —
Thus o, € I (7), 5& (w,)= 53 (n7) and 53 (w,)=1-1.Hence 5& (w,)= £—1 and we can choose

0= w, since, by transitivity and euclideanness of I,, I,(7) =1 (®)). Similarly,
V yn € €2 if nel(y) and 513 (77) is even then 3 O€/ ) such that 513 (0) 25[3 () —1 (A.22)

We want to show that for every &> 0 there exists a bet x such that it is common belief at « that

every individual has an expected utility of at least & The bet we will construct is such that x, <0
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(hence X0 0) if and only if 56 (w) 1s odd and X0~ 0 (hence X0 0) if and only if 56 (o) 1s

even. The following figure (where « is the true state 7) illustrates the idea of the proof.

|Insert Figure 5|
I e [ep 1pe]
y T .

X 1 K —-L M
_ L _
X ) K M
Figure 5

The construction in the proof of Proposition 4
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In Figure 5 the numbers K, L and M are all positive and chosen to satisfy the following conditions:
(), (K) 2 & (i) qu, (~K) +(1-q)u, (L) 2 & (i) pu, (~L)+(1-p)u, (M) > & These
conditions can be satisfies, because of the assumption that, for every utility function

ue U, lim u(x)=+oo.
X—>+0

Restrict attention to bets x that satisfy the following properties:

(1) if 513 (w)is odd then x, <O0andV o’ e (o) if 5[3(60’): 513 (@) thenx, =x

l,w 10"

(1) if 5& (w)iseventhen x, >0andV w’ e I(w)if 5& (o) = 5& (@) thenx, =x

l,w 10"

Claim 1. Fix an arbitrary y € £2such that 5[§ () < oo and an arbitrary &> 0. Then there exists a bet

satisfying (i) and (ii) above such that

(1) if yel (D lie.p, () >0] then D p (@) u,(x,)>¢ and

wel\(y)

(A.23)
(2)  ifyel(p [ie.p, () >0] then 2.0, (@) uy, (x,,) 2 .

wely(7)

Proof of claim. Fix an arbitrary £> 0 and an arbitrary y € I,() such that ye | I.(w) and

wel(a)

rel,(p. It 513 () is even for every @ € I (), then X, ,=K for some K > 0 for all @ € I,(y) and

hence Z p, (@) u,(x,,)=u, (K) which can be made to exceed &by choosing K large

wel ()
enough. Suppose now that 5@ (77) is odd for some 77 € I (7). Then by (A.21) there exists a 6 €1,(»)
such that 5@ (0= 5@ (1) —1 and by (A.20) for every @ € 1,(y) either 5@ (w) = 5@ (n) or 5@ (w) =

5[§ (n) —1. Fix anumber e¢such that 0 < ¢ <  min {p.,(@): p,,(@)>0}.Then

ie{l,2}, wel(a)

Zpu (o) u,(x,,) 2(1-¢ ul,y(xl,r) + gul,y(xw) (recall that X) < 0 and X 9> 0). Thus, given

wel\(y)
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any x, . by choosing x, , large enough it is possible to make this expression exceed &. The proof
of (2) is similar. To ensure the simultaneous satisfaction of (1) and (2) for the same ¥, note first

that by Lemma A.3 and Corollary A.2, I,(») # L(»). Let @ € I (») U L(») be a minimizer of 5[% ()

over () U L(). Let i be the individual for whom @ € L(3). Then X ,~ 0. Thus one can first fix

the payment from i to j (j # 1) at states " € [j( 7) such that 56 (0) > 56 (w) so as to ensure an

expected utility of at least & to individual j at yand then choose x, large enough so that individual

1’s expected utility at yis also greater than & [end of proof of Claim]

Now, two cases are possible: (1) ()= U L.(w) = U L (@) and 2) ()= U I.(w) for

wel(a) wel,(a) wel;(a)

exactly one i € N. Consider first case (1). Fix £> 0. By (A.23), starting from the state that

maximizes 5[§ (-) over I,(@) and proceeding inductively towards £ one can ensure an expected

utility of at least & to both individuals at every o € I,(«), that is, a bet x can be constructed such

that « € B,( ﬂ [v,(x) > &l)). In case (2), let i be the individual for whom U I.(@) # L(a).

ieN w'el;(a)

Then choosea 7 € ((I1 -L)yv(, _11)> N (I*(cx)\ U L (co)) and repeat the construction

wel; (1)
above to obtain bets y. [with the sign reversed if y € L(y)]. Definez_ =y, +x. . Then, by
repeating the argument based on (A.22), one can show that & € B,( ﬂ ||Vi(Z) >£). .

ieN

DEFINITION A.1. Let NI* (for Negative Introspection of common belief) be the following

event:

NI = () (B.EUB,-BE)
Ee2®

Thus aeNI if and only if, for every event E, if, at ¢, E is not commonly believed then, at ¢, it is

commonly believed that E is not common belief.

REMARK A.2. Itis well-known that, V ae 2, ac NI* if and only if I,(«) is euclidean, that
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is, pel.(e)= L.(a) cL(P).
LEMMA A.5. VaeQ if ae T nB,TthenV fel, (), I(«) =1,(0). It follows (see Remark
A2) that T AB,T NI .18

Proof. That 1(f) < 1(«) follows from transitivity of I,. Thus we only need to show that [.(&) <

L.(p) [that is, euclideanness of [,(«)]. By definition of I,, since fel,(«), there exists a sequence
(jl, jm> in N and a sequence (no, Ny oo nm> in Q such that: n, = o, n = P and, for every k =0,
eom=1,m € Ijkﬂ(nk)' By transitivity and euclideanness of Ijl’ since N, € Ijl(a), Ijl(oc) = Ijl(nl).
Since aeT, aeljl(oc). Thus atel(nl). Since 77, €l,() and BT, nleljz(nl). Since nzeljz(nl), by
transitivity and euclideanness of Ijz, Ijz(nl) = Ijz(nz). Thus 1, tez(nz). Repeating this argument m
times, we get that, k=0, ..., m, 7, tekH(nkH). Thus, by definition of L, 7, € L.(77 ), that is,

acl,(p). It follows from transitivity of I, that [,() c L(f). &

LEMMA A.6. Foreveryevent E c €2 B,B.,E=B,E.

Proof. It is well known (see Chellas, 1984, pp. 164 and 92 ) that, for any belief operator B,
BBE = BE for every event E if the corresponding possibility correspondence is transitive and

secondary reflexive. I, indeed satisfies both properties (cf. Remark A.1). B

PROPOSITION A.1 (Bonanno and Nehring, 1997). NI* =T, N BT,
LEMMA A.7. () Q N T, nB,T,, < BT, (i))B,T c B,T.,.
Proof. (1) First we show that
—B.—B.,T NI cB.T. (A.24)
Let & € —B,—B.T A NI . Since & € NI , & € B,T U B,—B,T. Hence, since & € —B,—B,T,
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a e B,T.
(i1)) By Lemma A.5, T n B, T < NI . Hence by Monotonicity of B,, B,T n B,B,T < B,NI . By
Lemma A.6, B,B,T = B,T and by Proposition A.1, B,.NI =B,T_, " B,B,T_,. By Lemma A.6,

B,B,T.,=B,T . ®

Proof of Proposition 5. By definition of T and T*,

*

TcT (A.25).
By (ii) of Lemma A.7,
B.TcB,T, (A.26).

By Lemma A.6, B,T = BB, T and by non-empty-valuedness of I,, B,B,T < —B,—B,T. Thus
B,T c —B,—B,T (A27).
Thus, by (A.25)-(A.27), TAB,TcT A B,T., "—B,~B,T.
By definition of T, T ~B,T., < T . Thus T AB,T., = T AT, "B,T.,. By

Proposition A.1, T "T, "B, T, =T NNI. Thus

T NBT, =T NNI. (A.28).

It follows from (A.28) that
T AB,T., Nn—B,~B,T = T ANI N—B,-B,T. (A.29).

By (A.24), T nNI n—-B,-B,TcT nB,T. Bydefinitionof T, T n B, T < T. Thus

T BT, N—B~BT cTABT ®
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FOOTNOTES

! See, for example, Aumann (1976, 1987, 1995, 1996), Bacharach (1985), Geanakoplos (1992), Faginet al

(1995).
* Implicitly we are referring to common belief in no error as “coherence of beliefs”.

3 We have included the true state in the definition of an interactive belief frame in order to stress the

interpretation of the frame as a representation of a particular profile of hierarchies of beliefs.

* See, for example, Aumann (1987), Aumann and Brandenburger (1995), Dekel and Gul (1997), Morris

(1994), Stalnaker (1994, 1996).

> A directed graph is asymmetric if, whenever there is an arrow from vertex v to vertex v then there is no

arrow from v’ to v.

® See, for example, Bonanno (1996), Fagin et al (1995), Halpern and Moses (1992), Lismont and Mongin
(1994, 1995). These authors also show that the common belief operator can be alternatively defined by

means of a finite list of axioms, rather than as an infinite conjunction.

"1t is well known that & € Tj ifand only if & € I].(a).

¥ Bacharach (1985) generalized Aumann’s result to the non-Bayesian case of “decision functions” that
satisfy the “Sure Thing Principle”. Roughly speaking he showed that if two individuals are “like-minded”
(in the sense that they choose their actions based on a common decision procedure that satisfies the sure
thing principle) and reach common knowledge of the actions each of them intends to perform, then they will
perform identical actions. Like Aumann, Bacharach assumes the S5 logic for individual beliefs (information

partitions). Moses and Nachum (1990) show that assuming like-mindedness and the sure thing principle
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amounts to assuming much more than the principle that, given the same information, the two individuals

would behave in the same way and raise doubts as to whether it is a meaningful assumption at all.

? If uis a probability distribution over £2, we denote by supp(x) the support of x, that is, the set of states to

which u assigns positive probability.

' The following are examples of proper belief indices:

(i) Let E c £ be an arbitrary event, X = [0,1] and fE the following belief index: fE(p) =p(E)= Z p(w)

wek
E
; thus, f (pi a) is individual i’s subjective probability of event E at state c.

(i) LetY :£2— R be arandom variable, X =R and f, be the belief index given by

£y (P) = D Y(0)p(w) : thus f,(p,,)is i’s subjective expectation of Y at state e

we

A
(iii) Let A be a set of actions, X=2 and U : A x £2— R a utility function. Define the belief index

A .
Sy 1 ALY — 2 as follows: f(p) = argmax z U(a,w)p(w) - Thus fU(pM) is the set of
agh  pe

actions that maximize individual i’s expected utility at state c.
' Relative to the standard Euclidean topology (recall that £2is assumed to be finite).

"> To represent f), in the manner of Proposition 1, let Y : £2— R be as follows: Y = 1, -1, where

1E: £2— {0,1} is the indicator function of E: 1E(a)) =1 ifand only if w € E. Hence

Y(@=]0 @k Then D Y(@)p(w)= Y Y(@)p(@)=- Y p(w) <0 ifand only if
-1 ifeogE weQ we—E we—E

p(@) > 0 for some we—E, if and only if Z p(w) < 1.

wekE

" Lemma 1 states that o € 7 -Agree if and only if for every individual i there exists a state S commonly

accessible from ¢ satisfying the following property: if state yis considered possible by j at £ then yis
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considered possible by i at some @ € I («). For example, in Figure 3 the above property is satisfied at every

state (for both 1 and 2 the role of S is played by 7).

" For example, let N = {1,2}, 2= {7, #}, VieNand V e I(0) = 2, p, (D=p, (H)=08,p, (h=
P, T(r) =0.2, u _=u, =u with u(x) =x if x > 0 and u(x) = 2x if x < 0. Then B, T = Q2and at z (and /)
there are unbounded gains from betting (the bet X| = X 57 >0, X\ g%, 7 " &yields an expected

utility to each individual of 0.4 £ which can be made arbitrarily large by increasing &).

15 q: — —
Since Tg~ {ooandl(D={L 1}, 7¢ BT

' 1 e. far below the restrictions implied by the agents’ wealth constraints.
7 Nor is it necessarily implied by it, depending on the model.

'8 Note that, without euclideanness, for a single individual it is not true that the conjunction of correct
beliefs and belief in correct beliefs yields negative introspection (even in the presence of positive

introspection). The proof of Lemma A.5 relies in an essential way on euclideanness of I for every

individual i.
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