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Abstract

Making a prediction is essentially expressing a belief about the future. It is therefore
natural to interpret later predictions as revisions of earlier ones and to investigate the
notion of belief revision in this context. We study, both semantically and syntactically,
the following principle of minimum revision of prediction: “as long as there are no
surprises, that is, as long as what actually occurs had been predicted to occur, then
everything which was predicted in the past, if still possible, should continue to be
predicted, and no new predictions should be added.”

1 Introduction

When we make a prediction we select, among the several conceivable future descriptions

of the world, those that appear to us to be most plausible. That is, making a prediction

is essentially expressing a belief about the future. It is therefore natural to interpret later

predictions as revisions of earlier ones and to investigate the notion of belief revision in this

context.

The notion of rational belief revision is normally identified in the literature with the con-

servativity principle which states that “When changing beliefs in response to new evidence,

you should continue to believe as many of the old beliefs as possible” (Harman, 1986, p.

46). This means that if an individual gets new information which is not inconsistent with

her previous beliefs, then (1) she has to maintain all the beliefs she previously had and (2)

the change in her beliefs should be minimal in the sense that every new proposition that she
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believes must be deducible from her old beliefs and the new information (see, for example,

Gärdenfors, 1988). Applied to our framework, the conservativity principle can be expressed

as the following principle of minimum revision of prediction:

“as long as there are no surprises, that is, as long as what actually occurs had
been predicted to occur, then everything which was predicted in the past, if
still possible, should continue to be predicted, and no new predictions should be
added.”

We provide both a semantic and a syntactic characterization of this principle. We also

discuss and characterize a notion of consistency of prediction and its relationship to the

principle of minimum revision.

2 The semantics of revision of prediction

Definition 1 A prediction frame is a triple 〈T,≺,≺p〉 where T is a set of instants and ≺

and ≺p are binary relations on T satisfying, ∀t1, t2, t3 ∈ T,

asymmetry of ≺: if t1 ≺ t2 then t2 ⊀ t1,

transitivity of ≺: if t1 ≺ t2 and t2 ≺ t3 then t1 ≺ t3,

backward linearity of ≺: if t1 ≺ t3 and t2 ≺ t3 then either t1 = t2 or t1 ≺ t2 or t2 ≺ t1,

≺p subrelation of ≺: if t1 ≺p t2 then t1 ≺ t2.

The pair 〈T,≺〉 is known in temporal logic as branching time.1 Backward linearity of

≺ expresses the notion that, while a given moment may have different possible futures,

its past is unique. In other words, there is at most one path between any two instants.

Our definition expands on the notion of branching time by adding a subrelation ≺p of the

temporal precedence relation ≺. We interpret t1 ≺ t2 as saying that t2 is in the conceivable

future of t1, while the interpretation of t1 ≺p t2 is that t2 is in the predicted future of t1.

Note that we do not assume that the predicted future of a given moment is a unique history

1See, for example, van Benthem (1991) and Burgess (1984).



following that moment (that is, we do not require that if t ≺p t′ and t ≺p t′′ then either

t′ = t′′ or t′ ≺ t′′ or t′′ ≺ t′). Furthermore, there is no requirement that the predicted future

of a given moment be a proper subset of its conceivable future, that is, vague or trivial

predictions are allowed. For example, let T = {t1, t2, t3, t4}, ≺= {(t1, t2), (t1, t3), (t1, t4)}

and interpret t2 as a state where it is sunny, t3 a state where it rains and t4 a state where

it snows. Then ≺p=≺ corresponds to the trivial prediction (at time t1) “tomorrow either it

will be sunny or it will rain or it will snow”, while ≺p= {(t1, t2), (t1, t3)} corresponds to the

somewhat vague prediction “tomorrow either it will be sunny or it will rain (but it will not

snow)” and ≺p= {(t1, t2)} corresponds to the sharp prediction “tomorrow it will be sunny”.

The dual nature of a prediction frame is reminiscent of the joint treatment (in another

branch of modal logic) of knowledge and belief.2 The set of conceivable future states (the

relation ≺) can be thought of as what the individual “knows” about the future, while the

set of predicted future states (the relation ≺p) represents what she “believes” about the

future. In our framework, the conservativity principle for belief revision can be expressed

as the following principle of minimum revision of prediction (MR), which says that, as long

as what actually occurs had been predicted to occur, then everything which was predicted

in the past, if still possible, should continue to be predicted, and no new predictions should

be added. Formally − letting C(t) = {t′ ∈ T : t ≺ t′} be the conceivable future of t and

P (t) = {t′ ∈ T : t ≺p t′} the predicted future of t − ∀t1, t2 ∈ T,

(MR) if t1 ≺p t2 and P (t1) ∩ C(t2) 
= ∅ then P (t2) = P (t1) ∩ C(t2).

Imagine that the present moment is t2. The hypothesis t1 ≺p t2 says that the present moment

had been predicted at some time in the past, while the hypothesis P (t1) ∩ C(t2) 
= ∅ says

that some of the predictions made at that time are still possible. The conclusion says that

the predictions made at the present moment should be precisely those that were made in

the past and are still possible. (MR) can be split into two parts:

2See, for example, Battigalli and Bonanno (1997), Halpern (1991), Hintikka (1962), van der Hoek (1993),
Lenzen (1978).



(1) if t1 ≺p t2, then P (t1) ∩ C(t2) ⊆ P (t2)

(2) if t1 ≺p t2 and P (t1) ∩ C(t2) 
= ∅ then P (t2) ⊆ P (t1) ∩ C(t2).

(1) says that the set of current predictions must include those that were made in the past and

are still possible; thus it is a non-contraction requirement. On the other hand, (2) says that

no new predictions can be added to those that were made in the past and are still possible;

thus it is a non-expansion requirement. Clearly, (1) can be written as: ∀t1, t2, t3 ∈ T ,

(MR1) if t1 ≺p t2, t1 ≺p t3 and t2 ≺ t3 then t2 ≺p t3,

while, given that P (t2) ⊆ C(t2) (since ≺p⊆≺), (2) is equivalent to:

if t1 ≺p t2 and P (t1) ∩ C(t2) 
= ∅ then P (t2) ⊆ P (t1)

which, in turn, can be written as: ∀t1, t2, t3, t4 ∈ T ,

(MR2) if t1 ≺p t2, t1 ≺p t3, t2 ≺ t3 and t2 ≺p t4 then t1 ≺p t4.

The conjunction of (MR1) and (MR2) thus expresses the notion of minimum revision of

prediction. In the next section we will discuss the axiomatization of this principle, for which

the following two propositions will be useful.

Proposition 2 In prediction frames, (MR1) is equivalent to the following property:

∀t1, t2, t3, t4 ∈ T ,

(MRa) if t1 ≺p t3, t2 ≺ t3 and t4 ≺p t2 then either t4 ≺ t1 or t1 ≺ t4 or t2 ≺p t3.

Proof. (MRa) =⇒ (MR1): Suppose that t1 ≺p t2, t1 ≺p t3 and t2 ≺ t3. By asymmetry
of ≺, t1 
≺ t1. Hence it follows from (MRa) (choosing t4 = t1) that t2 ≺p t3. (MR1) =⇒
(MRa): Suppose that t1 ≺p t3, t2 ≺ t3 and t4 ≺p t2. Since ≺p is a subrelation of ≺, t1 ≺ t3
and t4 ≺ t2. Since t1 ≺ t3 and t2 ≺ t3, by backward linearity of ≺ either (1) t2 ≺ t1 or (2)
t1 = t2 or (3) t1 ≺ t2. In case (1), using t4 ≺ t2 and transitivity of ≺, we get t4 ≺ t1. In case
(2) it follows from t4 ≺ t2 that t4 ≺ t1. In case (3) using t4 ≺ t2 and backward linearity of
≺ we get that either t4 ≺ t1 or t1 ≺ t4 or t1 = t4. If t1 = t4, then from (MR1) we get that
t2 ≺p t3.

Proposition 3 In prediction frames, (MR2) is equivalent to the following property:

∀t1, t2, t3, t4, t5 ∈ T ,

(MRb) if t1 ≺p t3, t2 ≺ t3, t5 ≺p t2 and t2 ≺p t4 then either t5 ≺ t1 or t1 ≺ t5 or t1 ≺p t4.



Proof. (MRb) =⇒ (MR2): Suppose that t1 ≺p t2, t1 ≺p t3, t2 ≺ t3 and t2 ≺p t4. By
asymmetry of ≺, t1 
≺ t1. Thus by (MRb), choosing t5 = t1, t1 ≺p t4. (MR2) =⇒ (MRb):
Suppose that t1 ≺p t3, t2 ≺ t3, t5 ≺p t2 and t2 ≺p t4. Since ≺p is a subrelation of ≺, t1 ≺ t3
and t5 ≺ t2. From t5 ≺ t2, t2 ≺ t3 and transitivity of ≺ we get that t5 ≺ t3. From t1 ≺ t3
and t5 ≺ t3 it follows from backward linearity of ≺ that either t5 ≺ t1 or t1 ≺ t5 or t1 = t5.
If t1 = t5, by (MR2), t1 ≺p t4.

Corollary 4 In prediction frames, (MR) is equivalent to the conjunction of (MR1) and

(MR2), which, in turn, is equivalent to the conjunction of (MRa) and (MRb).

While (MR) captures the notion of minimum revision of prediction, which can be inter-

preted as a requirement of rationality, there are further properties that seem to be natural

expressions of the notion of “rational” prediction. We will consider some such properties

and their relationship with (MR).

As remarked previously, predictions can be thought of as beliefs about the future. Even

if one allows for maximum freedom in the formation of such beliefs (e.g. in 1999 one could

not have labeled as “illogical” the belief that the world would come to an end on January 1,

2000) it seems that some restrictions of a logical nature ought to be imposed. For example,

consider the following statement:

‹‹I have never been to Italy, I am not in Italy now and I predict that at some
time in the future I will be able to truthfully assert “I have been to Italy”››.

It seems that, on logical grounds, we must require that the person who makes these assertions

be willing to state:

‹‹I predict that I will be in Italy at some time in the future››.3

It will be shown in the next section that this requirement corresponds to the following

property (‘CP’ stands for ‘consistency of prediction’): ∀t1, t2, t3 ∈ T ,

(CP1) if t1 ≺p t3, t2 ≺ t3, t1 
= t2 and t2 
≺ t1 then t1 ≺p t2.

3In the first statement the speaker foresees a point in the future where she will look back in time and see
herself in Italy. Since at the present moment she is not in Italy, and she has never been to Italy in the past,
then she must be foreseeing a future time when she will be in Italy.
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Property (CP1) is shown in Figure 1a, where a thick arrow from from t to t′ denotes that

t ≺ t′ (omitting arrows that can be obtained by transitivity) and a thin or dotted arrow

with the label ‘p’ from t to t′ denotes that t ≺p t′ (the thin arrow is part of the premise,

while the dotted arrow is the conclusion). Note that the thick arrow from t1 to t2 (that is,

the hypothesis that t1 ≺ t2) is implicit in the antecedent of (CP1): in fact, t1 ≺p t3 implies

t1 ≺ t3 (since ≺p is a subrelation of≺) and the latter, together with the hypothesis that

t2 ≺ t3 and t1 
= t2 and t2 
≺ t1, yields t1 ≺ t2 by backward linearity of ≺ .

Consider now the following statement:

‹‹I predict that at some time in the future I will visit Italy after having visited
France. I am not in France now and I have never been to France››.

It seems plausible, on consistency grounds, to require that the individual be willing to state

the following:

‹‹I can conceive of a time in the future when I will be in France and I will predict
a future visit to Italy››.

It will be shown in the next section that this requirement corresponds to the property:

∀t1, t2, t3 ∈ T ,



(CP2) if t1 ≺p t3, t2 ≺ t3, t1 
= t2 and t2 
≺ t1 then t2 ≺p t3.

Property (CP2) is shown in Figure 1b (once again, the thick arrow from t1 to t2, that is,

the hypothesis that t1 ≺ t2, is implicit in the antecedent).

As the following proposition shows, the above two properties can be condensed into the

following: ∀t1, t2, t3 ∈ T ,

(CP ) if t1 ≺p t3, t1 ≺ t2 and t2 ≺ t3 then t1 ≺p t2 and t2 ≺p t3.

It is worth stressing that the requirement expressed by (CP ) is imposed within a frame-

work where there is a unique path from t1 to t3, and t2 belongs to that path (indeed, the

characteristic feature of branching time is that each instant has a unique past history, while

the future is open).

The following is a seemingly more general version of (CP ):

(CP ′) If t1, ..., tn ∈ T are such that t1 ≺p tn and ti ≺ ti+1, ∀i = 1, ..., n− 1,

then ti ≺p ti+1 ∀i = 1, ..., n− 1.

Proposition 5 In prediction frames, (CP ′) is equivalent to (CP ) which, in turn, is equiv-

alent to the conjunction of (CP1) and (CP2).
4

Proof. (CP ) is the special case of (CP ′) where n = 3. To show that (CP ) implies
(CP ′), let t1, ..., tn ∈ T be such that t1 ≺p tn and ti ≺ ti+1, ∀i = 1, ..., n− 1, with n > 3. By
transitivity of ≺, t1 ≺ tn−1. Thus by (CP) tn−1 ≺p tn and t1 ≺p tn−1. Thus we have reduced
to the case n − 1. If n − 1 = 3, the proof is completed by a second application of (CP ).
If n− 1 > 3 the argument can be repeated until the sequence is reduced to three elements.
To prove the equivalence of (CP ) and the conjunction of (CP1) and (CP2), it is sufficient to
note that, by asymmetry and backward linearity of ≺ and the fact that ≺p is a subrelation
of ≺, (i) and (ii) below are equivalent: (i) t1 ≺p t3, t1 ≺ t2 and t2 ≺ t3, (ii) t1 ≺p t3, t2 ≺ t3,
t1 
= t2 and t2 
≺ t1.

4An alternative characterization of (CP) is given in Bonanno (2001).
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Remark 6 Consistency (CP ) and minimum revision (MR) of prediction are two are in-

dependent properties. Figure 2a shows a frame that satisfies (CP ) but not (MR) (since

P (t1) ∩ C(t2) = {t3} 
= C(t2) = {t3, t4}), while Figure 2b shows a frame that satisfies (MR)

but not (CP ) (since t1 
≺p t2).5

3 The syntax of revision of prediction

We now turn to the syntax. We take as starting point the temporal logic of branching time

(see Burgess, 1984). To the modal operators G and H, we add two more: Gp and Hp. The

intended interpretation is:

Gφ: “it is going to be the case in every conceivable future that φ”

Hφ: “it has always been the case that φ”

Gpφ: “it is going to be the case in every predicted future that φ”

Hpφ: “at every past instant at which today was predicted it was the case that φ”.

5It is the non-expansion property (MR2) that makes the two concepts unrelated. In fact, it is easy to see
that (CP2) is a strengthening of (MR1) and thus implies it: assume (CP2) and let the antecedent of (MR1)
be satisfied, that is, let t1 ≺p t2, t1 ≺p t3 and t2 ≺ t3. Since ≺p is a subrelation of ≺, t1 ≺ t2. Thus by
asymmetry of ≺, t1 
= t2 and t2 
≺ t1. Hence, by (CP2), t2 ≺p t3.

It can also be shown that in prediction frames where ≺p is transitive (CP ) implies (MR). The converse,
however, is not true, as the example of Figure 2b shows.



Let Fφ := ¬G¬φ, Pφ := ¬H¬φ, Fpφ := ¬Gp¬φ and Ppφ := ¬Hp¬φ. Thus the interpre-

tation of Fφ is “at some conceivable future instant it will be the case that φ”, while Fpφ is

interpreted as “at some predicted future instant it will be the case that φ ”. Similarly for

Pφ and Ppφ. The logic of prediction frames is obtained by adding the following axiom to

branching time logic (corresponding to the property that ≺p is a subrelation of ≺):

(Ap) Gφ→ Gpφ.

Given a prediction frame 〈T,≺,≺p〉 , a model based on it is obtained by adding a function

V : S → 2T (where 2T denotes the set of subsets of T ) that associates with every sentence

letter q the set of instants at which q is true. Given a model, an instant t and a formula φ,

we denote that φ is true at t by t |= φ; furthermore, ||φ|| denotes the truth set of φ, that is,

||φ|| = {t ∈ T : t |= φ}. The usual rules apply, in particular, t |= Gφ if and only if t′ |= φ for

all t′ such that t ≺ t′ and t |= Gpφ if and only if t′ |= φ for all t′ such that t ≺p t′, etc. A

formula φ is valid in a model if t |= φ for all t ∈ T and it is valid in a frame if it is valid in

every model based on it.

We say that a property of frames is characterized by an axiom if the axiom is valid in

any frame that satisfies the property and, conversely, if a frame does not satisfy the property

then the axiom is not valid in it. The next two propositions give the axioms that characterize

the principle of minimum revision of prediction.

Proposition 7 Property (MRa) is characterized by the following axiom

(AMRa) Fp (φ3 ∧ P (φ2 ∧ Ppφ))→ Pφ ∨ Fφ ∨ Fp (φ3 ∧ Pp (φ2 ∧ Ppφ)) .

Proof. Fix an arbitrary6 frame that satisfies (MRa). Let t1, φ, φ2 and φ3 be such that
t1 |= Fp (φ3 ∧ P (φ2 ∧ Ppφ)). Then there exist t2, t3 and t4 such that t1 ≺p t3, t3 |= φ3,
t2 ≺ t3, t2 |= φ2, t4 ≺p t2 and t4 |= φ. By (MRa) either t4 ≺ t1, in which case t1 |= Pφ,
or t1 ≺ t4, in which case t1 |= Fφ, or t2 ≺p t3, in which case t1 |= Fp (φ3 ∧ Pp (φ2 ∧ Ppφ)).
Conversely, fix a frame that does not satisfy (MRa). Then there exist t1, t2, t3 and t4 such
that t1 ≺p t3, t2 ≺ t3, t4 ≺p t2, t4 
≺ t1, t1 
≺ t4 and t2 
≺p t3. Let q, q2 and q3 be sentence

6Note that the proofs of Propositions 7-10 do not make use of the properties that define a branching-time
frame, that is, the characterization holds for every triple 〈T,≺,≺p〉 where ≺ is any binary relation on T and
≺p is a subrelation of ≺ .



letters and construct a model where ||q|| = {t4} (recall that ||φ|| denotes the truth set of
φ), ||q2|| = {t2} and ||q3|| = {t3}. Then t1 |= Fp (q3 ∧ P (q2 ∧ Ppq)). Since t4 
≺ t1, t1 � Pq.
Since t1 
≺ t4, t1 � Fq. The only t at which q2 ∧ Ppq is true is t2. Hence, since t2 
≺p t3,
t3 � Pp (q2 ∧ Ppq). Thus, since q3 is true only at t3, there is no t at which q3 ∧ Pp (q2 ∧ Ppq)
is true. Thus t1 � Fp (q3 ∧ Pp (q2 ∧ Ppq)).

Proposition 8 Property (MRb) is characterized by the following axiom

(AMRb) FpP (Ppφ ∧ Fpψ)→ Pφ ∨ Fφ ∨ Fpψ.

Proof. Fix an arbitrary frame that satisfies (MRb). Let t1, φ and ψ be such that
t1 |= FpP (Ppφ ∧ Fpψ). Then there exist t2, t3, t4 and t5 such that t1 ≺p t3, t2 ≺ t3, t5 ≺p t2,
t5 |= φ, t2 ≺p t4 and t4 |= ψ. By (MRb) either t5 ≺ t1, in which case t1 |= Pφ, or t1 ≺ t5, in
which case t1 |= Fφ, or t1 ≺p t4, in which case t1 |= Fpψ. Conversely, fix a frame that does
not satisfy (MRb). Then there exist t1, t2, t3, t4 and t5 such that t1 ≺p t3, t2 ≺ t3, t5 ≺p t2,
t2 ≺p t4, t5 
≺ t1, t1 
≺ t5 and t1 
≺p t4. Let q, and r be sentence letters and construct a model
where ||q|| = {t5} and ||r|| = {t4}. Then t1 |= FpP (Ppq ∧ Fpr). Since t5 
≺ t1, t1 � Pq. Since
t1 
≺ t5, t1 � Fq. Finally, since t1 
≺p t4, t1 � Fpr.

Thus in prediction frames the conjunction of axioms (AMRa) and (AMRb) characterizes

the principle of minimum revision of prediction (MR) (cf. Corollary 4).

We now turn to the notion of consistency of prediction expressed by (CP ). The follow-

ing two propositions provide a characterization which corresponds to the informal verbal

interpretation given in the previous section (for an alternative characterization see Bonanno,

2001, Lemma 2.4).

Proposition 9 Property (CP1) is characterized by the following axiom:

(ACP1) FpPφ→ φ ∨ Pφ ∨ Fpφ.

Proof. Fix an arbitrary frame that satisfies (CP1) and a model based on it. Suppose
that, for some instant t1 and formula φ, t1 |= FpPφ. Then there exist t2, t3 ∈ T such that
t1 ≺p t3, t2 ≺ t3 and t2 |= φ. If t1 = t2, then t1 |= φ. If t2 ≺ t1, then t1 |= Pφ. Suppose,
therefore, that t1 
= t2 and t2 
≺ t1. Then, by (CP1), t1 ≺p t2 and hence t1 |= Fpφ. Thus in
all three cases t1 |= φ∨Pφ∨Fpφ. Conversely, fix a frame that does not satisfy (CP1). Then
there exist t1, t2, t3 ∈ T such that t1 ≺p t3, t2 ≺ t3, t1 
= t2, t2 ⊀ t1 and t1 ⊀p t2. Let q be a
sentence letter and consider a model where ‖q‖ = {t2}. Then all of the following are true at
t1: FpPq, ¬q (because t1 
= t2), ¬Pq (because t2 ⊀ t1) and ¬Fpq (because t1 ⊀p t2).



Proposition 10 Property (CP2) is characterized by the following axiom:

(ACP2) Fp(ψ ∧ Pφ)→ φ ∨ Pφ ∨ Fp(ψ ∧ Ppφ).

Proof. Fix an arbitrary frame that satisfies (CP2) and a model based on it. Suppose
that, for some instant t1 and formulas φ and ψ, t1 |= Fp(ψ ∧Pφ). Then there exist t2, t3 ∈ T
such that t1 ≺p t3, t3 |= ψ, t2 ≺ t3 and t2 |= φ. If t1 = t2, then t1 |= φ. If t2 ≺ t1,
then t1 |= Pφ. Suppose, therefore, that t1 
= t2 and t2 
≺ t1. Then, by (CP2), t2 ≺p t3
so that t3 |= ψ ∧ Ppφ and thus t1 |= Fp(ψ ∧ Ppφ). Hence in all three cases we have that
t1 |= φ∨ Pφ∨ Fp(ψ ∧ Ppφ). Conversely, fix a frame that does not satisfy (CP2). Then there
exist t1, t2, t3 ∈ T such that t1 ≺p t3, t2 ≺ t3, t1 
= t2, t2 ⊀ t1 and t2 ⊀p t3. Let q and r be a
sentence letters and consider a model where ||q|| = {t2} and ‖r‖ = {t3}. Then the following
are true at t1: Fp(r ∧ Pq), ¬q (because t1 
= t2) and ¬Pq (because t2 ⊀ t1). Furthermore,
since t2 ⊀p t3 and q is true only at t2, t3 � Ppq. Hence, since r is true only at t3, r ∧ Ppq is
false everywhere. Thus t1 |= ¬Fp(r ∧ Ppq).

The conjunction of (ACP1) and (ACP2) thus provide a characterization of (CP ) in predic-

tion frames (cf. Proposition 5). The next proposition gives a single axiomwhich characterizes

(CP ) in prediction frames.

Proposition 11 In prediction frames, property (CP ) is characterized by the following ax-

iom:

(ACP ) Fp(ψ ∧ Pφ)→ φ ∨ Pφ ∨ Fp(φ ∧ Fpψ).

Proof. First we show that in arbitrary frames (that is, frames 〈T,≺,≺p〉 where ≺ is any
binary relation on T and ≺p is a subrelation of ≺) axiom (ACP ) characterizes the following
property: ∀t1, t2, t3 ∈ T ,
(CP ′′) if t1 ≺p t3 and t2 ≺ t3 then either t1 = t2 or t2 ≺ t1 or (t1 ≺p t2 and t2 ≺p t3)

Fix an arbitrary frame that satisfies (CP ′′), a model based on it, an instant t1 and
formulas φ and ψ. Suppose that t1 |= Fp(ψ ∧ Pφ). Then there exist t2 and t3 such that
t1 ≺p t3, t3 |= ψ, t2 ≺ t3 and t2 |= φ. By (CP ′′) either t1 = t2, in which case t1 |= φ, or
t2 ≺ t1, in which case t1 |= Pφ, or t1 ≺p t2 and t2 ≺p t3, in which case t1 |= Fp(φ ∧ Fpψ).
Conversely, fix a frame that does not satisfy (CP ′′). Then there exist t1, t2 and t3 such that
t1 ≺p t3, t2 ≺ t3, t1 
= t2, t2 
≺ t1 and either t1 
≺p t2 or t2 
≺p t3. Let q and r be sentence
letters and construct a model where ||q| | = {t2} and ||r|| = {t3}. Since t1 ≺p t3 and t2 ≺ t3,
t1 |= Fp(r∧Pq). Since t1 
= t2, t1 |= ¬q and, since t2 
≺ t1, t1 |= ¬Pq. Furthermore, (q ∧Fpr)
is either false everywhere, if t2 
≺p t3, or it is true exactly at t2, if t2 ≺p t3, in which case,
by our supposition, t1 
≺p t2; thus in either case t1 |= ¬Fp(q ∧ Fpr). Next we prove that, in
prediction frames, (CP ′′) is equivalent to (CP ). (CP ) =⇒ (CP ′′): Let t1 ≺p t3 and t2 ≺ t3.
Since ≺p is a subrelation of ≺, t1 ≺ t3. Hence by backward linearity of ≺, either t1 = t2



or t2 ≺ t1 or t1 ≺ t2. If t1 ≺ t2 then by (CP) t1 ≺p t2 and t2 ≺p t3. (CP ′′) =⇒ (CP ): Let
t1 ≺p t3, t1 ≺ t2 and t2 ≺ t3. Since t1 ≺ t2, by asymmetry of ≺, t1 
= t2 and t2 
≺ t1. Thus,
by (CP ′′), t1 ≺p t2 and t2 ≺p t3.

In Bonanno (2001) a system of logic is given which is sound and complete with respect

to the class of prediction frames that satisfy (CP ). This system uses axioms which are

different from (ACP1), (ACP2) and (ACP ). Similar soundness and completeness results can

be obtained for the systems discussed above. For example, one can show that the system

obtained by adding to the logic of branching time axioms (Ap), (AMRa) and (AMRb) is sound

and complete with respect to the class of prediction frames that satisfy (MR), etc.

4 Further properties of prediction

In this section we discuss other properties of prediction which might be appropriate in some

contexts. Because of space limitations the proofs are omitted.

In some applications it may make sense to require that, for every instant t, the predicted

future of t be non-empty, unless t is a terminal instant (i.e. it has no ≺-successors).7 Se-

mantically this property can be expressed as the requirement that ≺p be serial whenever ≺

is serial. Such a requirement rules out “agnosticism” in that it demands that some predic-

tion be made, whenever possible. Note, however, that it is not at all a strong requirement,

since the trivial prediction that “anything can happen” is consistent with this requirement:

it corresponds to the case where ≺p=≺. The following proposition gives the axiom that

characterizes this property.

Proposition 12 The axiom Gpφ ∧ Fφ → Fpφ characterizes the property that ≺p is serial

whenever ≺ is serial, that is, ∀t ∈ T , if t ≺ t1 for some t1, then t ≺p t2 for some t2.

Another possible requirement is that predicted instants belong to a unique history, in the

sense that the predicted future of any instant t consist of points on the same branch out of

t. This requirement is captured by the following property:

7For an application of this principle to game theory see Bonanno (1998).



if t1 ≺p t2 and t1 ≺p t3, then either t2 = t3, or t2 ≺ t3 or t3 ≺ t2

whose characterizing axiom is

Fpφ ∧ Fpψ → Fp(φ ∧ ψ) ∨ Fp(φ ∧ Fψ) ∨ Fp(Fφ ∧ ψ).

Finally, in some contexts a natural property to require is transitivity of ≺p, whose char-

acterizing axiom is Gpφ→ GpGpφ. Transitivity of ≺p can be viewed as capturing a principle

of coherence of belief close in spirit to van Fraassen’s Reflection Principle (van Fraassen,

1984): if I predict that at some future time I will visit France and I anticipate that, once

I am on French soil, I will predict visiting Italy, then it seems that I ought to predict now

that I will visit Italy at some future time.8

5 Conclusion

When we make a prediction we select, among the several possible future descriptions of the

world, those that appear to us to be more plausible, thereby expressing our belief about

what the future will be like. As time progresses, we revise our earlier predictions in the light

of the actual unfolding of events. The principle of minimum revision of belief, applied to this

context, says that, if there are no surprises, that is, if what we observe confirms our earlier

predictions, then we should maintain all the past predictions that are still possible and not

add any new ones. We provided a semantic and syntactic characterization of this principle.

We also discussed and characterized a notion of consistency of predictions as well as possible

further properties that one might want to impose on the notion of prediction.

8Transitivity of ≺p is a natural property whenever prediction is interpreted qualitatively as possibility
or plausibility of future states. On the other hand, if prediction is interpreted probabilistically in terms of
likely future states then transitivity of ≺p would not be a natural property: I may consider it likely today
that I will reach age 75 and, if I indeed reached age 75, I would then consider it likely that I would live to
be 80 and yet I might not consider it likely today that I will reach age of 80.
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